Kantorovich-Rubinstein misfit for inverting gravity-gradient data by the level-set method
暂无分享,去创建一个
[1] Carola-Bibiane Schönlieb,et al. Imaging with Kantorovich-Rubinstein Discrepancy , 2014, SIAM J. Imaging Sci..
[2] Michael S. Zhdanov,et al. Three-dimensional regularized focusing inversion of gravity gradient tensor component data , 2004 .
[3] Michael S. Zhdanov,et al. Focusing geophysical inversion images , 1999 .
[4] O. Dorn,et al. Level set methods for inverse scattering , 2006 .
[5] J. Qian,et al. A multiple level-set method for 3D inversion of magnetic data , 2017 .
[6] Yaoguo Li. 3-D Inversion of Gravity Gradiometer Data , 2001 .
[7] F. Condi,et al. Resolution And Efficient Inversion of Gravity Gradiometry , 1999 .
[8] Brittany D. Froese,et al. Application of the Wasserstein metric to seismic signals , 2013, 1311.4581.
[9] J. Kisabeth,et al. Joint 3-D Inversion of Gravity, Magnetic and Tensor Gravity Fields For Imaging Salt Formations in the Deepwater Gulf of Mexico , 2000 .
[10] Shingyu Leung,et al. A THREE-DIMENSIONAL INVERSE GRAVIMETRY PROBLEM FOR ICE WITH SNOW CAPS , 2013 .
[11] C. Villani. Topics in Optimal Transportation , 2003 .
[12] G. F. Roach,et al. Inverse problems and imaging , 1991 .
[13] 3D Inversion of Airborne Gravity Gradiomentry For Iron Ore Exploration In Brazil , 2010 .
[14] K. Kubik,et al. Compact gravity inversion , 1983 .
[15] Jean-David Benamou,et al. Mixed L2-Wasserstein Optimal Mapping Between Prescribed Density Functions , 2001 .
[16] Yaoguo Li. Processing Gravity Gradiometer Data Using an Equivalent Source Technique , 2001 .
[17] Jean Virieux,et al. An overview of full-waveform inversion in exploration geophysics , 2009 .
[18] X. Li. Efficient 3D Gravity and Magnetic Modeling , 2010 .
[19] Brittany D. Froese,et al. Optimal Transport for Seismic Full Waveform Inversion , 2016, 1602.01540.
[20] Shingyu Leung,et al. A Fast Local Level Set Method for Inverse Gravimetry , 2011 .
[21] R. Plessix. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications , 2006 .
[22] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[23] Yaoguo Li,et al. Inversion of gravity data using a binary formulation , 2006 .
[24] D. Jackson. Interpretation of Inaccurate, Insufficient and Inconsistent Data , 1972 .
[25] Yaoguo Li,et al. 3D inversion of airborne gravity gradiometry data in mineral exploration: A case study in the Quadrilátero Ferrífero, Brazil , 2013 .
[26] Jianliang Qian,et al. A local level-set method for 3D inversion of gravity-gradient data , 2015 .
[27] Jianliang Qian,et al. Joint inversion of gravity and traveltime data using a level-set-based structural parameterization , 2016 .
[28] J. Virieux,et al. Measuring the misfit between seismograms using an optimal transport distance: application to full waveform inversion , 2016 .
[29] Shingyu Leung,et al. AN IMPROVED FAST LOCAL LEVEL SET METHOD FOR THREE-DIMENSIONAL INVERSE GRAVIMETRY , 2015 .
[30] C. Farquharson,et al. Multiple level-set joint inversion of traveltime and gravity data with application to ore delineation: A synthetic study , 2018 .
[31] J. Qian,et al. A level-set method for imaging salt structures using gravity data , 2016 .
[32] Roland Glowinski,et al. Variational methods for the numerical solution of nonlinear elliptic problems , 2015, CBMS-NSF regional conference series in applied mathematics.
[33] G. Barnes,et al. Imaging geologic surfaces by inverting gravity gradient data with depth horizons , 2012 .
[34] Victor Isakov,et al. Inverse Source Problems , 1990 .
[35] D. Oldenburg,et al. 3-D inversion of gravity data , 1998 .
[36] Jianliang Qian,et al. An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals , 2006 .