Subdifferential properties of the minimal time function of linear control systems

We present several formulae for the proximal and Fréchet subdifferentials of the minimal time function defined by a linear control system and a target set. At every point inside the target set, the proximal/Fréchet subdifferential is the intersection of the proximal/Fréchet normal cone of the target set and an upper level set of a so-called Hamiltonian function which depends only on the linear control system. At every point outside the target set, under a mild assumption, proximal/Fréchet subdifferential is the intersection of the proximal/Fréchet normal cone of an enlargement of the target set and a level set of the Hamiltonian function.

[1]  C. Kaya,et al.  Computational Method for Time-Optimal Switching Control , 2003 .

[2]  Martino Bardi,et al.  A boundary value problem for the minimum-time function , 1989 .

[3]  Peter R. Wolenski,et al.  Some New Regularity Properties for the Minimal Time Function , 2006, SIAM J. Control. Optim..

[4]  Peter R. Wolenski,et al.  The subgradient formula for the minimal time function in the case of constant dynamics in Hilbert space , 2004, J. Glob. Optim..

[5]  P. Pardalos,et al.  Optimization and optimal control , 2003 .

[6]  M Pardalos Panos,et al.  Optimization and Control of Bilinear Systems , 2008 .

[7]  Yiran He,et al.  Subdifferentials of a minimal time function in normed spaces , 2009 .

[8]  Kung Fu Ng,et al.  Subdifferentials of a minimum time function in Banach spaces , 2006 .

[9]  Boris S. Mordukhovich,et al.  Limiting subgradients of minimal time functions in Banach spaces , 2010, J. Glob. Optim..

[10]  Philip D. Loewen,et al.  The value function in optimal control: Sensitivity, controllability, and time-optimality , 1986 .

[11]  Pierpaolo Soravia,et al.  Discontinuous viscosity solutions to dirichlet problems for hamilton-jacob1 equations with , 1993 .

[12]  W. Hager,et al.  Optimal Control: Theory, Algorithms, and Applications , 1998 .

[13]  Pierpaolo Soravia Generalized motion of a front propagating along its normal direction: a differential games approach , 1994 .

[14]  F. Clarke,et al.  Proximal Smoothness and the Lower{C 2 Property , 1995 .

[15]  P. Wolenski,et al.  Variational Analysis for a Class of Minimal Time Functions in Hilbert Spaces , 2004 .

[16]  Isao Nakayama,et al.  Uniqueness of Lower Semicontinuous Viscosity Solutions for the Minimum Time Problem , 2000, SIAM J. Control. Optim..

[17]  M. Ferris,et al.  On the Clarke subdifferential of the distance function of a closed set , 1992 .

[18]  H. Maurer,et al.  Optimization methods for the verification of second order sufficient conditions for bang–bang controls , 2005 .

[19]  R. Tyrrell Rockafellar,et al.  Proximal Subgradients, Marginal Values, and Augmented Lagrangians in Nonconvex Optimization , 1981, Math. Oper. Res..

[20]  A. Ioffe Proximal Analysis and Approximate Subdifferentials , 1990 .

[21]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[22]  Lionel Thibault,et al.  On various notions of regularity of sets in nonsmooth analysis , 2002 .

[23]  K. Teo,et al.  Control parametrization enhancing technique for time optimal control problems , 1997 .

[24]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[25]  P. Wolenski,et al.  Proximal Analysis and the Minimal Time Function , 1998 .