NMR studies of cathode materials for lithium-ion rechargeable batteries.

Lithium intercalation or insertion materials have been widely investigated in the search for new electrode materials for use in high-voltage rechargeable batteries.1-6 The first commercial Li-ion rechargeable battery contains the layered materials LiCoO2 (Figure 1) and graphite as the cathode (or positive electrode) and anode (or negative electrode), respectively.7 Although this battery is the current standard in many applications including cell phones and laptops, its slow charge and discharge rates and cost have prevented its use in applications that require cheap high power and capacity, such as hybrid electric vehicles and electric vehicles. The toxicity of Co is also an issue. A wide variety of materials have been studied,5,6 which include doped LiCoO2 phases, layered compounds based on the LiCoO2 structure (e.g., LiNiO2 8 and LiNi0.5Mn0.5O2 9,10),

[1]  B. Scrosati,et al.  A Polymeric Electrolyte Rechargeable Lithium Battery , 1988 .

[2]  E. Zhecheva,et al.  Cobalt(III) Effect on 27Al NMR Chemical Shifts in LiAlxCo1-xO2 , 2001 .

[3]  Young Joo Lee,et al.  6Li Magic Angle Spinning NMR Study of the Cathode Material LiNi x Mn2 − x O 4 : The Effect of Ni Doping on the Local Structure during Charging , 2001 .

[4]  M. Bose,et al.  NMR studies of the mixed conductor LixV2O5 , 1986 .

[5]  H. L. Hartley,et al.  Manuscript Preparation , 2022 .

[6]  P. Bruce,et al.  New intercalation compounds for lithium batteries: layered LiMnO2 , 1999 .

[7]  T. L. Mercier,et al.  Positive electrode materials for lithium batteries based on VOPO4 , 2001 .

[8]  J. Dahn,et al.  Synthesis and Characterization of Li1 + x Mn2 − x O 4 for Li‐Ion Battery Applications , 1996 .

[9]  A. Aboukaïs,et al.  51V magic angle spinning solid state NMR studies of Bi4V2O11 in oxidized and reduced states , 2000 .

[10]  Joel S. Miller,et al.  Magnetism: Molecules to Materials V , 2001 .

[11]  Linda F. Nazar,et al.  Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-Ion batteries , 2000 .

[12]  R. Gopal Crystal structure of VPO5 , 1972 .

[13]  Tsutomu Ohzuku,et al.  Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries , 2001 .

[14]  C. N. R. Rao,et al.  Transition metal oxides , 1995 .

[15]  B. Scrosati,et al.  Correlation between structural and electrochemical properties of Li metal vanadates , 2001 .

[16]  M. Munshi Handbook of Solid State Batteries and Capacitors , 1995 .

[17]  G. Ceder,et al.  Electrochemical Activity of Li in the Transition-Metal Sites of O3 Li [ Li ( 1 − 2x ) / 3Mn ( 2 − x ) / 3Ni x ] O 2 , 2004 .

[18]  John B. Goodenough,et al.  Magnetism and the chemical bond , 1963 .

[19]  Michael Mehring,et al.  Principles of high-resolution NMR in solids , 1982 .

[20]  A. Cheetham,et al.  Solid State Chemistry - Techniques , 1987 .

[21]  J. Goodenough,et al.  Chemical and Magnetic Characterization of Spinel Materials in the LiMn2O4–Li2Mn4O9–Li4Mn5O12System , 1996 .

[22]  Jeff Dahn,et al.  Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure , 1990 .

[23]  C. Dobson,et al.  Structural information from NMR studies of paramagnetic solids; 23Na MAS spectra of sodium lanthanide salts of ethylenediaminetetraacetic acid , 1992 .

[24]  Ivano Bertini,et al.  Solution NMR of Paramagnetic Molecules: Applications to metallobiomolecules and models , 2001 .

[25]  Young Joo Lee,et al.  Cation Ordering and Electrochemical Properties of the Cathode Materials LiZnxMn2-xO4, 0 < x ≤ 0.5: A 6Li Magic-Angle Spinning NMR Spectroscopy and Diffraction Study , 2002 .

[26]  E. Zhecheva,et al.  Aluminium coordination in LiNi1−yAlyO2 solid solutions , 2000 .

[27]  Y. Shao-horn,et al.  Structural fatigue in spinel electrodes in Li/Lix[Mn2]O4 cells , 1999 .

[28]  Y. Chiang,et al.  Origin of Cycling Stability in Monoclinic‐ and Orthorhombic‐Phase Lithium Manganese Oxide Cathodes , 1999 .

[29]  J. Goodenough,et al.  Structure refinement of the spinel-related phases Li2Mn2O4 and Li0.2Mn2O4 , 1987 .

[30]  Young Joo Lee,et al.  Lithium MAS NMR studies of cathode materials for lithium-ion batteries , 2003 .

[31]  J. Galy Vanadium pentoxide and vanadium oxide bronzes—Structural chemistry of single (S) and double (D) layer MxV2O5 phases , 1992 .

[32]  Brett Graeme Ammundsen,et al.  Novel Lithium‐Ion Cathode Materials Based on Layered Manganese Oxides , 2001 .

[33]  S. Greenbaum,et al.  Magnetic resonance studies of chemically intercalated LixV2O5 aerogels , 2002 .

[34]  C. Delmas,et al.  On the LixCo1−yMgyO2 system upon deintercalation: electrochemical, electronic properties and 7Li MAS NMR studies , 2002 .

[35]  Yang Shao-Horn,et al.  Structural Characterization of Layered LiMnO2 Electrodes by Electron Diffraction and Lattice Imaging , 1999 .

[36]  A. Kentgens,et al.  A 6Li, 7Li and 59Co MAS NMR study of rock salt type LixCoO2 (0.48≤x≤1.05) , 1998 .

[37]  Yunhong Zhou,et al.  Capacity Fading on Cycling of 4 V Li / LiMn2 O 4 Cells , 1997 .

[38]  M. Wagemaker,et al.  Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase , 2002, Nature.

[39]  J. J. Murray,et al.  Rechargeable cathodes based on Li2CrxMn2−xO4 , 1995 .

[40]  O. Lapina,et al.  51V and 31P NMR studies of VOx/TiO2 catalysts modified by phosphorous , 2000 .

[41]  Masaki Yoshio,et al.  An Investigation of Lithium Ion Insertion into Spinel Structure Li‐Mn‐O Compounds , 1996 .

[42]  Marca M Doeff,et al.  Hyperfine fields at the Li site in LiFePO(4)-type olivine materials for lithium rechargeable batteries: a (7)Li MAS NMR and SQUID study. , 2002, Journal of the American Chemical Society.

[43]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[44]  N. Atherton,et al.  Proton ENDOR of VO(H2O)5 2+ in Mg(NH4)2(SO4)2)26H2O , 1980 .

[45]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[46]  O. Lapina,et al.  51V-NMR spectra of vanadates and oxosulfato-vanadates of alkali metals , 1984 .

[47]  J. C. Hunter Preparation of a new crystal form of manganese dioxide: λ-MnO2 , 1981 .

[48]  J. Yarger,et al.  7Li NMR studies of electrochemically lithiated V2O5 xerogels , 2002 .

[49]  Christopher S. Johnson,et al.  In situ nuclear magnetic resonance investigations of lithium ions in carbon electrode materials using a novel detector , 2001 .

[50]  E. Kelder,et al.  6Li MAS NMR study of stoichiometric and chemically delithiated LixMn2O4 spinels , 2003 .

[51]  Young Joo Lee,et al.  6Li Magic Angle Spinning Nuclear Magnetic Resonance Study of the Cathode Materials Li1 + α Mn2 − α O 4 − δ The Effect of Local Structure on the Electrochemical Properties , 2002 .

[52]  Sanjeev Mukerjee,et al.  6Li and 7Li Magic‐Angle Spinning Nuclear Magnetic Resonance and In Situ X‐Ray Diffraction Studies of the Charging and Discharging of Li x Mn2 O 4 at 4 V , 2000 .

[53]  Jeffrey A. Reimer,et al.  A {sup 7}Li NMR study of lithium insertion into lithium manganese oxide spinel , 1999 .

[54]  S. Greenbaum,et al.  X-ray absorption and magnetic resonance spectroscopic studies of LixV6O13 , 1998 .

[55]  M. Pasquali,et al.  Lithium/lithium vanadium oxide secondary batteries: IV. Evaluation of factors affecting the performance of test cells , 1985 .

[56]  Laurence Croguennec,et al.  On the metastable O2-type LiCoO2 , 2001 .

[57]  G. Farrington,et al.  Mechanism of the electrochemical insertion of lithium into LiMn{sub 2}O{sub 4} spinels , 1998 .

[58]  A. D. Wadsley Crystal chemistry of non-stoichiometric pentavalent vandadium oxides: crystal structure of Li1+xV3O8 , 1957 .

[59]  G. Burns,et al.  A 6Li and 7Li MAS NMR study of the spinel-type manganese oxide LiMn2O4 and the rock salt-type manganese oxide Li2MnO3 , 1994 .

[60]  E. Kelder,et al.  Neutron diffraction study of stoichiometric spinel Li1+xMn2–xO4 showing octahedral 16c-site Li-occupation , 1999 .

[61]  W. David,et al.  Defect spinels in the system Li2O.yMnO2 (y>2.5): A neutron-diffraction study and electrochemical characterization of Li2Mn4O9 , 1990 .

[62]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[63]  Sakichi Ashida,et al.  A New Phase Appearing in Metal-Semiconductor Transition in VO2 , 1966 .

[64]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[65]  Metal Oxide Cathode Materials for Electrochemical Energy Storage: A Review , 1990 .

[66]  A. Yamada Lattice Instability in Li(LixMn2−x)O4 , 1996 .

[67]  Y. Miyai,et al.  Mechanism of Li+ insertion in spinel-type manganese oxide. Redox and ion-exchange reactions , 1991 .

[68]  K. Zamaraev,et al.  New possibilities of NMR spectroscopy in studies of adsorption and catalysis , 1984 .

[69]  B. Scrosati,et al.  Lithium-7 nuclear magnetic resonance and Ti K-edge X-ray absorption spectroscopic investigation of electrochemical lithium insertion in Li4/3+xTi5/3O4 , 2003 .

[70]  N. Bloembergen Fine structure of the magnetic resonance line of protons in CuSO4.5H2O , 1950 .

[71]  A. Clearfield,et al.  The Surface Structure of the Proton-Exchanged Lithium Manganese Oxide Spinels and Their Lithium-Ion Sieve Properties , 1997 .

[72]  C. Delmas,et al.  Evidence for structural defects in non-stoichiometric HT-LiCoO2 : electrochemical, electronic properties and 7Li NMR studies , 2000 .

[73]  C. Dobson,et al.  Yttrium-89 magic angle spinning NMR study of rare-earth pyrochlores: paramagnetic shifts in the solid state , 1990 .

[74]  J. Besenhard,et al.  Characteristics of molybdenum oxide and chromium oxide cathodes in primary and secondary organic electrolyte lithium batteries I. Morphology, structure and their changes during discharge and cycling , 1982 .

[75]  J. Dahn,et al.  Phase Diagram of Li−Mn−O Spinel in Air , 1999 .

[76]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[77]  Peter G. Bruce,et al.  Solid-state chemistry of lithium power sources† , 1997 .

[78]  F. Hawthorne,et al.  The crystal chemistry of the M+VO3 (M+ = Li, Na, K, NH4, Tl, Rb, and Cs) pyroxenes , 1977 .

[79]  Tao Zheng,et al.  The elevated temperature performance of the LiMn2O4/C system: Failure and solutions , 1999 .

[80]  Young Joo Lee,et al.  6Li MAS NMR Studies of the Local Structure and Electrochemical Properties of Cr-doped Lithium Manganese and Lithium Cobalt Oxide Cathode Materials for Lithium-Ion Batteries , 2002 .

[81]  J. Tirado,et al.  Electrochemical, 6Li MAS NMR, and X-ray and Neutron Diffraction Study of LiCoxFeyMn2-(x+y)O4 Spinel Oxides for High-Voltage Cathode Materials , 2003 .

[82]  M. Yoshio,et al.  Optimization of Spinel Li1 + x Mn2 − y O 4 as a 4 V Li‐Cell Cathode in Terms of a Li‐Mn‐O Phase Diagram , 1997 .

[83]  C. Delmas,et al.  6Li and 7Li NMR in the LiNi1-yCoyO2 Solid Solution (0 .ltoreq. y .ltoreq. 1) , 1995 .

[84]  J. Brus,et al.  6Li MAS NMR study of lithium insertion into hydrothermally prepared Li-Ti-O spinel , 2004 .

[85]  Hajime Arai,et al.  Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds , 1996 .

[86]  Jeremy Barker,et al.  Cathode materials for lithium rocking chair batteries , 1996 .

[87]  I. Bertini,et al.  Solvent water1H NMRD study of oxovanadium(IV) aquo ion , 1992 .

[88]  U. Haeberlen M. Mehring: Principles of High Resolution NMR in Solids, Springer Verlag Berlin, Heidelberg, New York 1983. 342 Seiten, Preis: DM 172,— , 1983 .

[89]  J. Klinowski Nuclear magnetic resonance studies of zeolites , 1984 .

[90]  Stephane Levasseur,et al.  The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study , 1999 .

[91]  E. Cairns,et al.  A 7Li Nuclear Magnetic Resonance Study of Metal-Substituted Lithium Manganese Oxide Spinels , 2001 .

[92]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[93]  J. Gaubicher,et al.  Lithium electrochemical intercalation in β-VOSO4 , 1997 .

[94]  J. Irvine,et al.  An NMR investigation of lithium occupancy of different sites in the oxide superconductor LiTi2O4 and related compounds , 2000 .

[95]  A. Nayeem,et al.  Calculation of magic-angle spinning nuclear magnetic resonance spectra of paramagnetic solids , 1988 .

[96]  P. A. Christian,et al.  Lithium incorporation by vanadium pentoxide , 1979 .

[97]  Young Joo Lee,et al.  6Li Magic-Angle Spinning (MAS) NMR Study of Electron Correlations, Magnetic Ordering, and Stability of Lithium Manganese(III) Oxides , 2000 .

[99]  R. E. Robertson,et al.  ISOTROPIC NUCLEAR RESONANCE SHIFTS , 1958 .

[100]  59Co and 6,7Li MAS NMR in Polytypes O2 and O3 of LiCoO2 , 2001 .

[101]  C. Grey,et al.  (2)H MAS NMR studies of the manganese dioxide tunnel structures and hydroxides used as cathode materials in primary batteries. , 2001, Journal of the American Chemical Society.

[102]  M. Balasubramanian,et al.  In Situ X-Ray Absorption Study of a Layered Manganese-Chromium Oxide-Based Cathode Material , 2002 .

[103]  L. Nazar,et al.  Charge ordering in lithium vanadium phosphates: electrode materials for lithium-ion batteries. , 2003, Journal of the American Chemical Society.

[104]  S. Greenbaum,et al.  Magnetic resonance studies of chemically intercalated LixV2O5 (x=1.16 and 1.48) , 2002 .

[105]  François Béguin,et al.  In situ 7Li-nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons , 2003 .

[106]  J. Hanson,et al.  Kinetics and mechanism of the beta- to alpha-CuAlCl(4) phase transition: a time-resolved (63)Cu MAS NMR and powder X-ray diffraction study. , 2001, Journal of the American Chemical Society.

[107]  C. Calvo,et al.  Crystal Structure of α-VPO5 , 1973 .

[108]  H. Eckert,et al.  Solid-state vanadium-51 NMR structural studies on supported vanadium(V) oxide catalysts: vanadium oxide surface layers on alumina and titania supports , 1989 .

[109]  H. Willigen Proton ENDOR on VO(H2O)52+ in solid solution , 1980 .

[110]  C. Grey,et al.  Magnetism and structural chemistry of the n = 1 Ruddlesden-Popper phases La4LiMnO8 and La3SrLiMnO8. , 2002, Journal of the American Chemical Society.

[111]  Ru‐Shi Liu,et al.  Local Structure and First Cycle Redox Mechanism of Layered Li 1.2 Cr 0.4 Mn 0.4 O 2 Cathode Material , 2002 .

[112]  Isobel J. Davidson,et al.  Long Range and Short Range Magnetic Order in Orthorhombic LiMnO2 , 1997 .

[113]  M. Thackeray,et al.  Structural characterization of Li1+xV3O8 insertion electrodes by single-crystal X-ray diffraction , 1993 .

[114]  Y. Shao-horn,et al.  Oxygen Vacancies and Intermediate Spin Trivalent Cobalt Ions in Lithium-Overstoichiometric LiCoO2 , 2003 .

[115]  F. M. Mulder,et al.  Lithium dynamics in LiMn2O4 probed directly by two-dimensional (7)Li NMR. , 2001, Physical review letters.

[116]  E. Cairns,et al.  Supertransferred hyperfine fields at â·Li: Variable temperature â·Li NMR studies of LiMnâOâ-based spinels , 1998 .

[117]  G. Pistoia,et al.  MoO/sub 3/: a new electrode material for nonaqueous secondary battery applications , 1971 .

[118]  R. Benedek,et al.  Atomic structure and electrochemical potential of Li[sub 1+x]V[sub 3]O[sub 8] , 1999 .

[119]  A. J. Moulson,et al.  Transition Metal Oxides , 1991 .

[120]  H. Tietze The crystal and molecular structure of oxovanadium(V) orthophosphate dihydrate, VOPO4,2H2O , 1981 .

[121]  Michael M. Thackeray,et al.  Structural Changes of LiMn2 O 4 Spinel Electrodes during Electrochemical Cycling , 1999 .

[122]  J. S. Frye High-Resolution NMR of Solids , 1990 .

[123]  N. Dupré,et al.  Electrochemical performance of different Li-VOPO4 systems , 2001 .

[124]  C. Delmas,et al.  The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation , 1994 .

[125]  Xiao‐Qing Yang,et al.  INVESTIGATION OF THE LOCAL STRUCTURE OF THE LINI0.5MN0.5O2 CATHODE MATERIAL DURING ELECTROCHEMICAL CYCLING BY X-RAY ABSORPTION AND NMR SPECTROSCOPY , 2002 .

[126]  M. A. Hopf [Introduction to magnetic resonance]. , 1985, Revue medicale de la Suisse romande.

[127]  John B. Goodenough,et al.  Effect of Structure on the Fe3 + / Fe2 + Redox Couple in Iron Phosphates , 1997 .

[128]  C. Delmas,et al.  A new variety of LiMnO2 with a layered structure , 1996 .

[129]  P. Mustarelli,et al.  TRANSFERRED HYPERFINE INTERACTION AND STRUCTURE IN LIMN2O4 AND LI2MNO3 COEXISTING PHASES : A XRD AND 7LI NMR-MAS STUDY , 1997 .

[130]  Dominique Guyomard,et al.  The carbon/Li1+xMn2O4 system , 1994 .

[131]  C. Dobson,et al.  Paramagnetic ions as structural probes in solid-state NMR: Distance measurements in crystalline lanthanide acetates , 1993 .

[132]  R. Huggins Solid State Ionics , 1989 .

[133]  P. Hagenmuller,et al.  7Li NMR in electrochemically intercalated γLixV2O5Bronzes (0.95 ⩽x ⩽1.9) , 1992 .

[134]  C. Delmas,et al.  7 Li MAS NMR study of electrochemically deintercalated LixNi0.30Co0.70O2 phases: evidence of electronic and ionic mobility, and redox processes , 2001 .

[135]  Christopher S. Johnson,et al.  Lithium and Deuterium NMR Studies of Acid-Leached Layered Lithium Manganese Oxides , 2002 .

[136]  M. Pouchard,et al.  7Li NMR of electrochemically inserted LixV2O5 , 1992 .

[137]  Young Joo Lee,et al.  6Li and 7Li MAS NMR Studies of Lithium Manganate Cathode Materials , 1998 .

[138]  P. Dickens,et al.  Transport and equilibrium properties of some oxide insertion compounds , 1981 .

[139]  Young Joo Lee,et al.  Determining the Lithium Local Environments in the Lithium Manganates LiZn0.5Mn1.5O4 and Li2MnO3 by Analysis of the 6Li MAS NMR Spinning Sideband Manifolds , 2002 .

[140]  Michael M. Thackeray,et al.  Improved capacity retention in rechargeable 4 V lithium/lithium- manganese oxide (spinel) cells , 1994 .

[141]  T. L. Mercier,et al.  Li / β ‐ VOPO 4: A New 4 V System for Lithium Batteries , 1999 .

[142]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[143]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[144]  A. Khelfa,et al.  Lithium intercalation in MoO3: A comparison between crystalline and disordered phases , 1994 .

[145]  M. Doeff,et al.  7Li and 31P Magic Angle Spinning Nuclear Magnetic Resonance of LiFePO4-type materials , 2001 .

[146]  C. Grey,et al.  Study of Ion-Exchanged Microporous Lithosilicate Na–RUB-29 Using Synchrotron X-Ray Single-Crystal Diffraction and 6Li MAS NMR Spectroscopy , 2002 .

[147]  G. Ceder,et al.  Understanding the NMR shifts in paramagnetic transition metal oxides using density functional theory calculations , 2003 .

[148]  R. Schöllhorn,et al.  Chromium oxides as cathodes for secondary high energy density lithium batteries , 1977 .

[149]  N. Nielsen,et al.  51V MAS NMR spectroscopy: determination of quadrupole and anisotropic shielding tensors, including the relative orientation of their principal-axis systems , 1992 .

[150]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[151]  M. Broussely,et al.  Crystal chemistry of electrochemically inserted LixV2O5 , 1991 .

[152]  M. Stanley Whittingham,et al.  The Role of Ternary Phases in Cathode Reactions , 1976 .

[153]  Peter G. Bruce,et al.  Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries , 1996, Nature.