Is Huffman coding dead?

In recent publications about data compression, arithmetic codes are often suggested as the state of the art, rather than the more popular Huffman codes. While it is true that Huffman codes are not optimal in all situations, we show that the advantage of arithmetic codes in compression performance is often negligible. Referring also to other criteria, we conclude that for many applications, Huffman codes should still remain a competitive choice.ZusammenfassungIn neueren Publikationen über Datenkompression werden oft arithmetische Codes anstatt der gebräuchlicheren Huffman-Codes als Stand der Wissenschaft vorgeschlagen. Obwohl Huffman-Codes nicht unter allen Umständen optimal sind, zeigen wir, daß der Vorteil arithmetischer Codes zur Kompression häufig vernachlässigbar klein ist. Unter Berücksichtigung auch anderer Kriterien schließen wir, daß für viele Anwendungen Huffman-Codes auch weiterhin eine gute Alternative darstellen.

[1]  Thomas J. Ferguson,et al.  Self-synchronizing Huffman codes , 1984, IEEE Trans. Inf. Theory.

[2]  Shmuel Tomi Klein,et al.  Compression, information theory, and grammars: a unified approach , 1990, TOIS.

[3]  Alfredo De Santis,et al.  New bounds on the redundancy of Huffman codes , 1991, IEEE Trans. Inf. Theory.

[4]  Daniel S. Hirschberg,et al.  Efficient decoding of prefix codes , 1990, CACM.

[5]  Donald E. Knuth,et al.  Dynamic Huffman Coding , 1985, J. Algorithms.

[6]  Donald E. Knuth,et al.  The art of computer programming: V.1.: Fundamental algorithms , 1997 .

[7]  Shmuel Tomi Klein,et al.  Models of Bitmap Generation: A Systematic Approach to Bitmap Compression , 1992, Inf. Process. Manag..

[8]  Shmuel Tomi Klein,et al.  Bidirectional Huffman Coding , 1990, Comput. J..

[9]  Inder Jeet Taneja,et al.  Bounds on the redundancy of Huffman codes , 1986, IEEE Trans. Inf. Theory.

[10]  J G Daugman,et al.  Information Theory and Coding , 1998 .

[11]  Gustav Herdan,et al.  The advanced theory of language as choice and chance , 1968 .

[12]  Eugene S. Schwartz,et al.  Generating a canonical prefix encoding , 1964, CACM.

[13]  Shmuel Tomi Klein,et al.  Efficient variants of Huffman codes in high level languages , 1985, SIGIR '85.

[14]  Ian H. Witten,et al.  An empirical evaluation of coding methods for multi-symbol alphabets , 1993, [Proceedings] DCC `93: Data Compression Conference.

[15]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[16]  Shmuel Tomi Klein,et al.  A Systematic Approach to Compressing a Full-Text Retrieval System , 1992, Inf. Process. Manag..

[17]  Shmuel Tomi Klein,et al.  Can random fluctuation be exploited in data compression? , 1993, [Proceedings] DCC `93: Data Compression Conference.

[18]  Alistair Moffat,et al.  Coding for compression in full-text retrieval systems , 1992, Data Compression Conference, 1992..

[19]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.

[20]  H. F. Gaines,et al.  Cryptanalysis: A Study of Ciphers and Their Solution , 1956 .

[21]  H. S. Heaps,et al.  Information retrieval, computational and theoretical aspects , 1978 .

[22]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[23]  Jorma Rissanen,et al.  Generalized Kraft Inequality and Arithmetic Coding , 1976, IBM J. Res. Dev..

[24]  Ian H. Witten,et al.  Data Compression in Full-Text Retrieval Systems , 1993, J. Am. Soc. Inf. Sci..

[25]  Mark Nelson,et al.  The Data Compression Book , 2009 .

[26]  G.G. Langdon,et al.  Data compression , 1988, IEEE Potentials.

[27]  Robert G. Gallager,et al.  Variations on a theme by Huffman , 1978, IEEE Trans. Inf. Theory.

[28]  Jan van Leeuwen,et al.  On the Construction of Huffman Trees , 1976, ICALP.

[29]  Shmuel Tomi Klein,et al.  Bounding the Depth of Search Trees , 1993, Comput. J..

[30]  Jeffrey Scott Vitter,et al.  Design and analysis of dynamic Huffman codes , 1987, JACM.

[31]  Lawrence L. Larmore,et al.  A fast algorithm for optimal length-limited Huffman codes , 1990, JACM.

[32]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[33]  Ehud D. Karnin,et al.  High efficiency, multiplication free approximation of arithmetic coding , 1991, [1991] Proceedings. Data Compression Conference.

[34]  Glen G. Langdon,et al.  Arithmetic Coding , 1979 .

[35]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume I: Fundamental Algorithms, 2nd Edition , 1997 .

[36]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[37]  Shmuel Tomi Klein,et al.  Storing text retrieval systems on CD-ROM: compression and encryption considerations , 1989, SIGIR '89.

[38]  H. Kadner F. L. Bauer u. G. Goos, Informatik. Eine einführende Übersicht. Zweiter Teil. XII + 200 S. m. 70 Abb. Berlin/Heidelberg/New York 1971. Springer-Verlag. Preis brosch. DM 12,80 , 1972 .

[39]  E. F. Moore,et al.  Variable-length binary encodings , 1959 .

[40]  Jukka Teuhola,et al.  Piecewise arithmetic coding , 1991, [1991] Proceedings. Data Compression Conference.

[41]  Edgar N. Gilbert,et al.  Codes based on inaccurate source probabilities , 1971, IEEE Trans. Inf. Theory.

[42]  Matti Jakobsson Huffman Coding in Bit-Vector Compression , 1978, Inf. Process. Lett..

[43]  Aviezri S. Fraenkel,et al.  Novel Compression of Sparse Bit-Strings — Preliminary Report , 1985 .

[44]  J. Vitter,et al.  Practical Implementations of Arithmetic Coding , 1991 .