Cartoon Approximation with -Curvelets
暂无分享,去创建一个
[1] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[2] D. Donoho. Sparse Components of Images and Optimal Atomic Decompositions , 2001 .
[3] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[4] T. Berger. Rate-Distortion Theory , 2003 .
[5] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[6] R. Gribonval,et al. Nonlinear Approximation with Dictionaries I. Direct Estimates , 2004 .
[7] D. Labate,et al. Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators , 2006 .
[8] Wang-Q Lim,et al. Compactly supported shearlets are optimally sparse , 2010, J. Approx. Theory.
[9] Gitta Kutyniok,et al. Shearlets: Multiscale Analysis for Multivariate Data , 2012 .
[10] Wang-Q Lim,et al. Optimally Sparse Approximations of 3D Functions by Compactly Supported Shearlet Frames , 2011, SIAM J. Math. Anal..
[11] Wang-Q Lim,et al. Compactly Supported Shearlets , 2010, 1009.4359.
[12] P. Grohs. Ridgelet-type Frame Decompositions for Sobolev Spaces related to Linear Transport , 2012 .
[13] Gitta Kutyniok,et al. α-Molecules : Curvelets , Shearlets , Ridgelets , and Beyond , 2013 .
[14] Gitta Kutyniok,et al. Alpha molecules: curvelets, shearlets, ridgelets, and beyond , 2013, Optics & Photonics - Optical Engineering + Applications.
[15] Gitta Kutyniok,et al. Parabolic Molecules , 2012, Found. Comput. Math..