Facilitation of seedling growth and nutrient uptake by indigenous arbuscular mycorrhizal fungi in intensive agroecosytems

[1]  Fusuo Zhang,et al.  Mycorrhizal responsiveness of maize (Zea mays L.) genotypes as related to releasing date and available P content in soil , 2013, Mycorrhiza.

[2]  A. Mead,et al.  Contrasting arbuscular mycorrhizal communities colonizing different host plants show a similar response to a soil phosphorus concentration gradient , 2013, The New phytologist.

[3]  Xin-ping Chen,et al.  Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat , 2013, Journal of experimental botany.

[4]  Gang-cai Liu,et al.  The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China , 2013 .

[5]  R. Drijber,et al.  Impact of long-term nitrogen fertilization and rotation with soybean on the diversity and phosphorus metabolism of indigenous arbuscular mycorrhizal fungi within the roots of maize (Zea mays L.) , 2013 .

[6]  T. Ezawa,et al.  Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities , 2012, Plant and Soil.

[7]  M. St-Arnaud,et al.  Various forms of organic and inorganic P fertilizers did not negatively affect soil- and root-inhabiting AM fungi in a maize–soybean rotation system , 2012, Mycorrhiza.

[8]  Fusuo Zhang,et al.  Contribution of Root Proliferation in Nutrient-Rich Soil Patches to Nutrient Uptake and Growth of Maize , 2012 .

[9]  J. Kirkegaard,et al.  The agronomic relevance of arbuscular mycorrhizas in the fertility of Australian extensive cropping systems , 2012 .

[10]  Youzhi Feng,et al.  Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. , 2012, Environmental science & technology.

[11]  M. V. D. van der Heijden,et al.  Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils , 2012, Molecular ecology.

[12]  R. Terzano,et al.  Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. A review , 2012, Biology and Fertility of Soils.

[13]  Tao Zhang,et al.  On-site growth response of a desert ephemeral plant, Plantago minuta, to indigenous arbuscular mycorrhizal fungi in a central Asia desert , 2011, Symbiosis.

[14]  M. Öpik,et al.  Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet Plateau. , 2011, FEMS microbiology ecology.

[15]  Sally E. Smith,et al.  Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. , 2011, Annual review of plant biology.

[16]  I. Jakobsen,et al.  Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition1 , 2011, Plant Physiology.

[17]  R. Drijber,et al.  Spatio-temporal dynamics of an indigenous arbuscular mycorrhizal fungal community in an intensively managed maize agroecosystem in North China , 2011 .

[18]  Plant-available P supply is not the main factor determining the benefit from arbuscular mycorrhiza to crop P nutrition and growth in contrasting cropping systems , 2011, Plant and Soil.

[19]  H. Kahiluoto,et al.  Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems , 2011, Mycorrhiza.

[20]  D. Wipf,et al.  Agroecology: the key role of arbuscular mycorrhizas in ecosystem services , 2010, Mycorrhiza.

[21]  E. Verbruggen,et al.  Evolutionary ecology of mycorrhizal functional diversity in agricultural systems , 2010, Evolutionary applications.

[22]  P. Vitousek,et al.  Significant Acidification in Major Chinese Croplands , 2010, Science.

[23]  S. Robinson,et al.  Food Security: The Challenge of Feeding 9 Billion People , 2010, Science.

[24]  Z. Nan,et al.  New agricultural practices in the Loess Plateau of China do not reduce colonisation by arbuscular mycorrhizal or root invading fungi and do not carry a yield penalty , 2010, Plant and Soil.

[25]  M. St-Arnaud,et al.  Long-Term Phosphorus Fertilization Impacts Soil Fungal and Bacterial Diversity but not AM Fungal Community in Alfalfa , 2010, Microbial Ecology.

[26]  J. Katzenberger,et al.  Nutrient Imbalances in Agricultural Development , 2009, Science.

[27]  Fusuo Zhang,et al.  Root size and nitrogen‐uptake activity in two maize (Zea mays) inbred lines differing in nitrogen‐use efficiency , 2009 .

[28]  F. Wright,et al.  High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. , 2008, The New phytologist.

[29]  J. Young,et al.  Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. , 2008, FEMS microbiology ecology.

[30]  A. Copetta,et al.  Preferential Colonization of Solanum tuberosum L. Roots by the Fungus Glomus intraradices in Arable Soil of a Potato Farming Area , 2008, Applied and Environmental Microbiology.

[31]  P. Christie,et al.  Response of Two Maize Inbred Lines with Contrasting Phosphorus Efficiency and Root Morphology to Mycorrhizal Colonization at Different Soil Phosphorus Supply Levels , 2008 .

[32]  H. Owen,et al.  New Phytol , 2008 .

[33]  Fusuo Zhang,et al.  Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China , 2008, Nutrient Cycling in Agroecosystems.

[34]  E. Barrios Soil biota, ecosystem services and land productivity , 2007 .

[35]  R. Drijber,et al.  Increased abundance of arbuscular mycorrhizal fungi in soil coincides with the reproductive stages of maize , 2007 .

[36]  K. McGuire Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. , 2007, Ecology.

[37]  X. Ju,et al.  Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. , 2007, Environmental pollution.

[38]  Zhenrong Yu,et al.  Factors affecting soil quality changes in the North China Plain: A case study of Quzhou County , 2006 .

[39]  M. Zobel,et al.  Composition of root‐colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe , 2006 .

[40]  F. Oehl,et al.  Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity , 2006, Molecular ecology.

[41]  M. Rillig,et al.  Mycorrhizas and soil structure , 2006 .

[42]  A. Hodge,et al.  Arbuscular mycorrhizal fungi and organic farming , 2006 .

[43]  P. Lammers,et al.  The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. , 2005, The New phytologist.

[44]  J. Trevors,et al.  Microbe management: application of mycorrhyzal fungi in sustainable agriculture , 2005 .

[45]  R. Koide,et al.  Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. , 2005, The New phytologist.

[46]  J. Jansa,et al.  Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil , 2005, Mycorrhiza.

[47]  T. Boller,et al.  Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. , 2004, The New phytologist.

[48]  S. Declerck,et al.  Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. , 2004, The New phytologist.

[49]  P. Garbeva,et al.  Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. , 2004, Annual review of phytopathology.

[50]  Michael G. Booth Mycorrhizal networks mediate overstorey‐understorey competition in a temperate forest , 2004 .

[51]  J. Dodd,et al.  The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol , 2000, Plant and Soil.

[52]  J. Fyles,et al.  Seasonal changes of arbuscular mycorrhizal fungi as affected by tillage practices and fertilization : Hyphal density and mycorrhizal root colonization , 1997, Plant and Soil.

[53]  S. Smith,et al.  The effect of soil compaction on growth and P uptake by Trifolium subterraneum: interactions with mycorrhizal colonisation , 1996, Plant and Soil.

[54]  M. Hart,et al.  Do arbuscular mycorrhizal fungi recover from soil disturbance differently , 2004 .

[55]  T. Boller,et al.  Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi , 2004, Oecologia.

[56]  J. Klironomos,et al.  VARIATION IN PLANT RESPONSE TO NATIVE AND EXOTIC ARBUSCULAR MYCORRHIZAL FUNGI , 2003 .

[57]  I. Jakobsen,et al.  Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses1 , 2003, Plant Physiology.

[58]  T. Boller,et al.  Impact of Land Use Intensity on the Species Diversity of Arbuscular Mycorrhizal Fungi in Agroecosystems of Central Europe , 2003, Applied and Environmental Microbiology.

[59]  M. Hart,et al.  Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi , 2002 .

[60]  S. Perotto,et al.  The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility , 2002, Biology and Fertility of Soils.

[61]  P. Wagoner,et al.  Tillage and farming system affect AM fungus populations, mycorrhizal formation, and nutrient uptake by winter wheat in a high-P soil , 2001 .

[62]  D. Read,et al.  Novel in-growth core system enables functional studies of grassland mycorrhizal mycelial networks. , 2001, The New phytologist.

[63]  I. Maldonado-Mendoza,et al.  A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. , 2001, Molecular plant-microbe interactions : MPMI.

[64]  A. Hodge,et al.  An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material , 2001, Nature.

[65]  A. Fitter,et al.  Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. , 2001, FEMS microbiology ecology.

[66]  Daniel Schwarzott,et al.  A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores , 2001, Mycorrhiza.

[67]  I. Jakobsen,et al.  Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores. , 2001, The New phytologist.

[68]  T. Boller,et al.  Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi , 2000 .

[69]  Murray H. Miller Arbuscular mycorrhizae and the phosphorus nutrition of maize: A review of Guelph studies , 2000 .

[70]  E. Bååth,et al.  Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field , 1999 .

[71]  L. Jackson,et al.  Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle , 1999 .

[72]  B. Stenberg Monitoring Soil Quality of Arable Land: Microbiological Indicators , 1999 .

[73]  A. Fitter,et al.  Ploughing up the wood-wide web? , 1998, Nature.

[74]  Alastair H. Fitter,et al.  Arbuscular Mycorrhiza Protect an Annual Grass from Root Pathogenic Fungi in the Field , 1995 .

[75]  I. Jakobsen,et al.  External hyphae of vesicular arbuscular mycorrhizal fungi associated with trifolium subterraneum l. 1. spread of hyphae and phosphorus inflow into roots , 1992 .

[76]  I. Jakobsen,et al.  External hyphae of vesicular–arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. , 1992 .

[77]  J. M. Phillips,et al.  Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. , 1970 .