GPU Computing in Economics

This paper discusses issues related to GPU for Economic problems. It highlights new methodologies and resources that are available for solving and estimating economic models and emphasizes situations when they are useful and others where they are impractical. Two examples illustrate the different ways these GPU parallel methods can be employed to speed computation.

[1]  Raymond Turner,et al.  Specification , 2011, Minds and Machines.

[2]  George Tauchen,et al.  Finite state markov-chain approximations to univariate and vector autoregressions , 1986 .

[3]  Nathan Bell,et al.  Thrust: A Productivity-Oriented Library for CUDA , 2012 .

[4]  Andras Fulop,et al.  Efficient Learning via Simulation: A Marginalized Resample-Move Approach , 2012 .

[5]  Jack Dongarra,et al.  High-performance computing systems: Status and outlook* , 2012, Acta Numerica.

[6]  John Geweke,et al.  Massively Parallel Sequential Monte Carlo for Bayesian Inference , 2011 .

[7]  Pedro Trancoso,et al.  Initial Experiences Porting a Bioinformatics Application to a Graphics Processor , 2005, Panhellenic Conference on Informatics.

[8]  Dennis Kristensen,et al.  INDIRECT LIKELIHOOD INFERENCE , 2013 .

[9]  Drew D. Creal Exact likelihood inference for autoregressive gamma stochastic volatility models 1 , 2012 .

[10]  Pat Hanrahan,et al.  Ray tracing on a connection machine , 1988, ICS '88.

[11]  Jesús Fernández-Villaverde,et al.  Tapping the Supercomputer Under Your Desk: Solving Dynamic Equilibrium Models With Graphics Processors , 2010 .

[12]  K. Judd Numerical methods in economics , 1998 .

[13]  G. Amdhal,et al.  Validity of the single processor approach to achieving large scale computing capabilities , 1967, AFIPS '67 (Spring).

[14]  Anselmo Lastra,et al.  Simulation of cloud dynamics on graphics hardware , 2003, HWWS '03.

[15]  Stefano Grassi,et al.  Heterogeneous Computing in Economics: A Simplified Approach , 2013, Computational Economics.

[16]  Eric M. Aldrich Trading Volume in General Equilibrium with Complete Markets , 2013 .

[17]  Rüdiger Westermann,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, SIGGRAPH Courses.

[18]  Pradeep Dubey,et al.  Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU , 2010, ISCA.

[19]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[20]  B. McCarl,et al.  Economics , 1870, The Indian medical gazette.

[21]  Wen-mei W. Hwu,et al.  GPU computing gems , 2011 .

[22]  Arnaud Doucet,et al.  On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods , 2009, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[23]  B. Heer,et al.  Dynamic General Equilibrium Modeling , 2009 .

[24]  John Geweke,et al.  Adaptive Sequential Posterior Simulators for Massively Parallel Computing Environments , 2013, 1304.4334.

[25]  Finn E. Kydland,et al.  Time to Build and Aggregate Fluctuations , 1982 .