Chlorosomes: Antenna Organelles in Photosynthetic Green Bacteria

[1]  Hui Li ORGANIZATION AND FUNCTION OF CHLOROSOME PROTEINS IN THE GREEN SULFUR BACTERIUM CHLOROBIUM TEPIDUM , 2006 .

[2]  H. Frank,et al.  Isolation and Characterization of Carotenosomes from a Bacteriochlorophyll c-less Mutant ofChlorobium tepidum , 2005, Photosynthesis Research.

[3]  Robert Eugene Blankenship,et al.  The Ultrastructure of Chlorobium tepidum Chlorosomes Revealed by Electron Microscopy , 2005, Photosynthesis Research.

[4]  O. Jensen,et al.  Chlorosome Proteins Studied by MALDI-TOF-MS: Topology of CsmA in Chlorobium tepidum , 2005, Photosynthesis Research.

[5]  Robert Eugene Blankenship,et al.  Purification and Characterization of the B808–866 Light-harvesting Complex from Green Filamentous Bacterium Chloroflexus aurantiacus , 2005, Photosynthesis Research.

[6]  Edward M. Rubin,et al.  Metagenomics: DNA sequencing of environmental samples , 2005, Nature Reviews Genetics.

[7]  T. Balaban Tailoring porphyrins and chlorins for self-assembly in biomimetic artificial antenna systems. , 2005, Accounts of chemical research.

[8]  Jörg Overmann,et al.  An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  K. Shimada,et al.  Structural and Spectroscopic Properties of a Reaction Center Complex from the Chlorosome-Lacking Filamentous Anoxygenic Phototrophic Bacterium Roseiflexus castenholzii , 2005, Journal of bacteriology.

[10]  D. Bryant,et al.  Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria , 2004, Archives of Microbiology.

[11]  A. D. Jones,et al.  Genetic Manipulation of Carotenoid Biosynthesis in the Green Sulfur Bacterium Chlorobium tepidum , 2004, Journal of bacteriology.

[12]  R. Tuma,et al.  Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. , 2004, Biophysical journal.

[13]  D. Bryant,et al.  The bchU Gene of Chlorobium tepidum Encodes the C-20 Methyltransferase in Bacteriochlorophyll c Biosynthesis , 2004, Journal of bacteriology.

[14]  S. Takaichi,et al.  The Role of Carotenoids in the Photoadaptation of the Brown-colored Sulfur Bacterium Chlorobium phaeobacteroides , 2004 .

[15]  D. Bryant,et al.  Nine Mutants of Chlorobium tepidum Each Unable To Synthesize a Different Chlorosome Protein Still Assemble Functional Chlorosomes , 2004, Journal of bacteriology.

[16]  M. Danielsen,et al.  Characterization of the chlorosome antenna of the filamentous anoxygenic phototrophic bacterium Chloronema sp. strain UdG9001 , 2003, Archives of Microbiology.

[17]  V. Pizziconi,et al.  Characterization of Chlorobium tepidum chlorosomes: a calculation of bacteriochlorophyll c per chlorosome and oligomer modeling. , 2003, Biophysical journal.

[18]  Robert Eugene Blankenship,et al.  Isolation and characterization of the B798 light-harvesting baseplate from the chlorosomes of Chloroflexus aurantiacus. , 2003, Biochemistry.

[19]  J. Imhoff Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna-Matthews-Olson protein) gene sequences. , 2003, International journal of systematic and evolutionary microbiology.

[20]  E. Vassilieva,et al.  Selective protein extraction from Chlorobium tepidum chlorosomes using detergents. Evidence that CsmA forms multimers and binds bacteriochlorophyll a. , 2002, Biochemistry.

[21]  C. Borrego,et al.  Bacteriochlorophyll e Monomers, but Not Aggregates, Sensitize Singlet Oxygen: Implications for a Self-photoprotection Mechanism in Chlorosomes¶ , 2002 .

[22]  Ingeborg Holt,et al.  The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Bryant,et al.  Chlorobium tepidum Mutant Lacking Bacteriochlorophyll c Made by Inactivation of the bchK Gene, Encoding Bacteriochlorophyll c Synthase , 2002, Journal of bacteriology.

[24]  R. Airs,et al.  Atmospheric pressure chemical ionisation liquid chromatography/mass spectrometry of bacteriochlorophylls from Chlorobiaceae: characteristic fragmentations. , 2002, Rapid communications in mass spectrometry : RCM.

[25]  E. Vassilieva,et al.  Subcellular localization of chlorosome proteins in Chlorobium tepidum and characterization of three new chlorosome proteins: CsmF, CsmH, and CsmX. , 2002, Biochemistry.

[26]  G. Hauska,et al.  The reaction center of green sulfur bacteria(1). , 2001, Biochimica et biophysica acta.

[27]  D. Bryant,et al.  Chromosomal Gene Inactivation in the Green Sulfur Bacterium Chlorobium tepidum by Natural Transformation , 2001, Applied and Environmental Microbiology.

[28]  C. Borrego,et al.  Effect of carotenoid deficiency on cells and chlorosomes of Chlorobium phaeobacteroides , 2001, Archives of Microbiology.

[29]  B. Zybailov,et al.  Electron transfer may occur in the chlorosome envelope: the CsmI and CsmJ proteins of chlorosomes are 2Fe-2S ferredoxins. , 2001, Biochemistry.

[30]  C. Borrego,et al.  Nanosecond Laser Photolysis Studies of Chlorosomes and Artificial Aggregates Containing Bacteriochlorophyll e: Evidence for the Proximity of Carotenoids and Bacteriochlorophyll a in Chlorosomes from Chlorobium phaeobacteroides strain CL1401¶ , 2000 .

[31]  H. Wackerbarth,et al.  Diastereoselective Control of Bacteriochlorophyll e Aggregation. 31-S-BChl e Is Essential for the Formation of Chlorosome-Like Aggregates , 2000 .

[32]  K. Naqvi,et al.  Electronic energy transfer involving carotenoid pigments in chlorosomes of two green bacteria: Chlorobium tepidum and Chloroflexus aurantiacus , 2000 .

[33]  T. Gillbro,et al.  Effect of Carotenoid Biosynthesis Inhibition on the Chlorosome Organization in Chlorobium phaeobacteroides Strain CL1401 , 2000, Photochemistry and photobiology.

[34]  N. Frigaard,et al.  Association of bacteriochlorophyll a with the CsmA protein in chlorosomes of the photosynthetic green filamentous bacterium Chloroflexus aurantiacus. , 1999, Biochimica et biophysica acta.

[35]  N. Frigaard,et al.  Exogenous quinones inhibit photosynthetic electron transfer in Chloroflexus aurantiacus by specific quenching of the excited bacteriochlorophyll c antenna. , 1999, Biochimica et biophysica acta.

[36]  W. Ludwig,et al.  Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain , 1999, Archives of Microbiology.

[37]  Matsuura,et al.  Oxygen uncouples light absorption by the chlorosome antenna and photosynthetic electron transfer in the green sulfur bacterium chlorobium tepidum , 1999, Biochimica et biophysica acta.

[38]  C. Borrego,et al.  Light intensity effects on pigment composition and organisation in the green sulfur bacterium Chlorobium tepidum , 1999, Photosynthesis Research.

[39]  N. Frigaard,et al.  Studies of the location and function of isoprenoid quinones in chlorosomes from green sulfur bacteria , 1998, Photosynthesis Research.

[40]  J. Oelze,et al.  Phototrophic growth and chlorosome formation in Chloroflexus aurantiacus under conditions of carotenoid deficiency , 1997, Photosynthesis Research.

[41]  M. Madigan,et al.  New carotenoids from the thermophilic green sulfur bacterium Chlorobium tepidum: 1′,2′-dihydro-γ-carotene, 1′,2′-dihydrochlorobactene, and OH-chlorobactene glucoside ester, and the carotenoid composition of different strains , 1997, Archives of Microbiology.

[42]  S. Takaichi,et al.  Quinones in chlorosomes of green sulfur bacteria and their role in the redox-dependent fluorescence studied in chlorosome-like bacteriochlorophyll c aggregates , 1997, Archives of Microbiology.

[43]  U. Ermler,et al.  Crystallization and X‐ray analysis of the reaction center from the thermophilic green bacterium Chloroflexus aurantiacus , 1996, FEBS letters.

[44]  D. Bryant,et al.  Characterization of the csmD and csmE genes from Chlorobium tepidum. The CsmA, CsmC, CsmD, and CsmE proteins are components of the chlorosome envelope , 1996, Photosynthesis Research.

[45]  D. Bryant,et al.  Characterization of csmB genes, encoding a 7.5-kDa protein of the chlorosome envelope, from the green sulfur bacteria Chlorobium vibrioforme 8327D and Chlorobium tepidum , 1996, Archives of Microbiology.

[46]  M. Mimuro,et al.  MORPHOLOGY AND SPECTROSCOPY OF CHLOROSOMES FROM CHLOROBIUM TEPIDUM BY ALCOHOL TREATMENTS , 1995 .

[47]  Robert Eugene Blankenship,et al.  Microscopic and spectroscopic studies of untreated and hexanol-treated chlorosomes from Chloroflexus aurantiacus , 1995 .

[48]  A. Hiraishi,et al.  Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. , 1995, International journal of systematic bacteriology.

[49]  T. Nozawa,et al.  Structures of chlorosomes and aggregated BChlc inChlorobium tepidum from solid state high resolution CP/MAS13C NMR , 1994, Photosynthesis Research.

[50]  H. Zuber,et al.  Genes encoding two chlorosome components from the green sulfur bacteriaChlorobium vibrioforme strain 8327D andChlorobium tepidum , 1994, Photosynthesis Research.

[51]  C. Borrego,et al.  Separation of bacteriochlorophyll homologues from green photosynthetic sulfur bacteria by reversed-phase HPLC , 1994, Photosynthesis Research.

[52]  M. Mimuro,et al.  The formation and characterization of the in vitro polymeric aggregates of bacteriochlorophyllc homologs fromChlorobium limicola in aqueous suspension in the presence of monogalactosyl diglyceride , 1994, Photosynthesis Research.

[53]  F. Lottspeich,et al.  The primary structure of two chlorosome proteins from Chloroflexus aurantiacus , 1994, FEBS letters.

[54]  T. Gillbro,et al.  AQUEOUS AGGREGATES OF BACTERIOCHLOROPHYLL c AS A MODEL FOR PIGMENT ORGANIZATION IN CHLOROSOMES , 1993 .

[55]  J. Olson,et al.  High degree of organization of bacteriochlorophyll c in chlorosome-like aggregates spontaneously assembled in aqueous solution , 1992 .

[56]  J. Olson,et al.  Localization of polypeptides in isolated chlorosomes from green phototrophic bacteria by immuno-gold labeling electron microscopy , 1991 .

[57]  Carl R. Woese,et al.  A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. , 1991, Archives of Microbiology.

[58]  J. Olson,et al.  A novel aminoglycosphingolipid found in Chlorobium limicola f. thiosulfatophilum 6230 , 1991, Archives of Microbiology.

[59]  J. Olson,et al.  Reversible conversion of aggregated bacteriochlorophyll c to the monomeric form by 1-hexanol in chlorosomes from Chlorobium and Chloroflexus , 1990 .

[60]  J. Olson,et al.  Bacteriochlorophyll c monomers, dimers, and higher aggregates in dichloromethane, chloroform, and carbon tetrachloride , 1990, Photosynthesis Research.

[61]  Robert Eugene Blankenship,et al.  Effects of oxidants and reductants on the efficiency of excitation transfer in green photosynthetic bacteria. , 1990, Biochimica et biophysica acta.

[62]  H. Zuber,et al.  The BChlc/e‐binding polypeptides from chlorosomes of green photosynthetic bacteria , 1988 .

[63]  J. Oelze,et al.  Quantitative relationship between bacteriochlorophyll content, cytoplasmic membrane structure and chlorosome size in Chloroflexus aurantiacus , 1987, Archives of Microbiology.

[64]  J. Olson,et al.  A new bacteriochlorophyll a-protein complex associated with chlorosomes of green sulfur bacteria. , 1986, Biochimica et biophysica acta.

[65]  J. Olson,et al.  Optical and structural properties of chlorosomes of the photosynthetic green sulfur bacterium Chlorobium limicola , 1986 .

[66]  H. Holo,et al.  Glycolipids and the structure of chlorosomes in green bacteria , 1985, Archives of Microbiology.

[67]  H. Zuber,et al.  The complete amino acid sequence of the bacteriochlorophyll c binding polypeptide from chlorosomes of the green photosynthetic bacterium Chloroflexus aurantiacus , 1985 .

[68]  R. Fuller,et al.  Topography of the photosynthetic apparatus of Chloroflexus aurantiacus , 1984 .

[69]  J. Waterbury,et al.  Chloroherpeton thalassium gen. nov. et spec. nov., a non-filamentous, flexing and gliding green sulfur bacterium , 1984, Archives of Microbiology.

[70]  Robert Eugene Blankenship,et al.  Menaquinone is the sole quinone in the facultatively aerobic green photosynthetic bacterium Chloroflexus aurantiacus , 1983 .

[71]  Kevin M. Smith,et al.  Aggregation of the bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria , 1983 .

[72]  R. Sirevåg,et al.  Quantitative and structural characteristics of lipids in Chlorobium and Chloroflexus , 1982, Archives of Microbiology.

[73]  L. Staehelin,et al.  Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. , 1980, Biochimica et biophysica acta.

[74]  L. Staehelin,et al.  Visualization of the supramolecular architecture of chlorosomes (chlorobium type vesicles) in freeze-fractured cells of Chloroflexus aurantiacus , 1978, Archives of Microbiology.

[75]  R. Cogdell Carotenoids in photosynthesis , 1978, Photochemistry and photobiology.

[76]  L. N. Halfen,et al.  Carotenoids of a gliding organism containing bacteriochlorophylls , 1972, Archiv für Mikrobiologie.

[77]  R. Powls,et al.  Quinones of the Chlorobacteriaceae. Properties and possible function. , 1969, Biochimica et biophysica acta.

[78]  R. Lewin,et al.  Herpetosiphon aurantiacus gen. et sp. n., a new filamentous gliding organism , 1968, Journal of bacteriology.

[79]  G. Cohen-bazire,et al.  THE FINE STRUCTURE OF GREEN BACTERIA , 1964, The Journal of cell biology.

[80]  D. Bryant,et al.  Bacteriochlorophyll Biosynthesis in Green Bacteria , 2006 .

[81]  J. Overmann The Family Chlorobiaceae , 2006 .

[82]  H. Scheer,et al.  Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications , 2006 .

[83]  C. Borrego,et al.  Determination of the topography and biometry of chlorosomes by atomic force microscopy , 2004, Photosynthesis Research.

[84]  K. Schmidt A comparative study on the composition of chlorosomes (Chlorobium vesicles) and cytoplasmic membranes from Chloroflexus aurantiacus strain Ok-70-fl and Chlorobium limicola f. thiosulfatophilum strain 6230 , 2004, Archives of Microbiology.

[85]  E. Vassilieva,et al.  Biosynthesis of chlorosome proteins is not inhibited in acetylene-treated cultures of Chlorobium vibrioforme , 2004, Photosynthesis Research.

[86]  R. Castenholz,et al.  A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. , 2004, Archives of Microbiology.

[87]  J. Oelze,et al.  Chlorosome development in Chloroflexus aurantiacus , 2004, Photosynthesis Research.

[88]  J. Olson,et al.  The FMO protein is related to PscA in the reaction center of green sulfur bacteria , 2004, Photosynthesis Research.

[89]  D. Bryant,et al.  Chlorobium Tepidum: Insights into the Structure, Physiology, and Metabolism of a Green Sulfur Bacterium Derived from the Complete Genome Sequence , 2004, Photosynthesis Research.

[90]  J. Olson,et al.  Thinking About the Evolution of Photosynthesis , 2004, Photosynthesis Research.

[91]  C. B. V. Niel,et al.  On the morphology and physiology of the purple and green sulphur bacteria , 2004, Archiv für Mikrobiologie.

[92]  D. Bryant,et al.  Gene inactivation in the cyanobacterium Synechococcus sp. PCC 7002 and the green sulfur bacterium Chlorobium tepidum using in vitro-made DNA constructs and natural transformation. , 2004, Methods in molecular biology.

[93]  P. Beyer,et al.  Particulate fractions from Chloroflexus aurantiacus and distribution of lipids and polyprenoid forming activities , 2004, Archives of Microbiology.

[94]  J. Klappenbach,et al.  Phylogenetic and physiological characterization of a filamentous anoxygenic photoautotrophic bacterium ‘Candidatus Chlorothrix halophila’ gen. nov., sp. nov., recovered from hypersaline microbial mats , 2003, Archives of Microbiology.

[95]  B. Green The Evolution of Light-harvesting Antennas , 2003 .

[96]  William W. Parson,et al.  Light-Harvesting Antennas in Photosynthesis , 2003, Advances in Photosynthesis and Respiration.

[97]  Kevin M. Smith,et al.  81 – Chlorosome Chlorophylls (Bacteriochlorophylls c, d, and e): Structures, Partial Syntheses, and Biosynthetic Proposals , 2003 .

[98]  W. W. Parson,et al.  Photosynthetic membranes and their light-harvesting antennas , 2003 .

[99]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[100]  D. Kelly,et al.  The prokaryotes: an evolving electronic resource for the microbiological community - , 2002 .

[101]  S. Takaichi,et al.  Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. , 2002, International journal of systematic and evolutionary microbiology.

[102]  Jindong Zhao,et al.  The remarkable chlorosome , 2001 .

[103]  R. Castenholz,et al.  Phylum BVI. Chloroflexi phy. nov. , 2001 .

[104]  C. Vannini,et al.  Fluorescence and absorption detected magnetic resonance of chlorosomes from green bacteria Chlorobium tepidum and Chloroflexus aurantiacus. A comparative study , 2001 .

[105]  J. Overmann,et al.  Phylum BXI. Chlorobi phy. nov. , 2001 .

[106]  P. Roepstorff,et al.  Pigments and proteins in green bacterial chlorosomes studied by matrix-assisted laser desorption ionization mass spectrometry. , 2000, European journal of biochemistry.

[107]  Andrew J. Young,et al.  The Photochemistry of Carotenoids , 1999, Advances in Photosynthesis and Respiration.

[108]  S. Takaichi Carotenoids and Carotenogenesis in Anoxygenic Photosynthetic Bacteria , 1999 .

[109]  S. Takaichi,et al.  Pigment Composition in the Reaction Center Complex from the Thermophilic Green Sulfur Bacterium, Chlorobium tepidum: Carotenoid Glucoside Esters, Menaquinone and Chlorophylls , 1999 .

[110]  Robert Eugene Blankenship,et al.  Redox effects on the excited-state lifetime in chlorosomes and bacteriochlorophyll c oligomers. , 1997, Biophysical journal.

[111]  J. Olson,et al.  Antenna Complexes from Green Photosynthetic Bacteria , 1995 .

[112]  J. Oelze,et al.  Membranes and Chlorosomes of Green Bacteria: Structure, Composition and Development , 1995 .

[113]  M. Madigan,et al.  Anoxygenic Photosynthetic Bacteria , 1995, Advances in Photosynthesis and Respiration.

[114]  R. Castenholz,et al.  The Family Chloroflexaceae , 1992 .

[115]  H. Cypionka,et al.  An extremely low‐light adapted phototrophic sulfur bacterium from the Black Sea , 1992 .