The Ideal Energy of Classical Lattice Dynamics
暂无分享,去创建一个
[1] Tommaso Toffoli,et al. Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .
[2] M. Planck. Ueber das Gesetz der Energieverteilung im Normalspectrum , 1901 .
[3] Norman Margolus,et al. Universal Cellular Automata Based on the Collisions of Soft Spheres , 2008, Collision-Based Computing.
[4] Anthony J. G. Hey,et al. Feynman And Computation , 2002 .
[5] P. Lallemand,et al. Lattice-gas cellular automata, simple models of complex hydrodynamics , 1998 .
[6] Norman Margolus,et al. Physics and Computation , 1987 .
[7] N. Margolus,et al. Invertible cellular automata: a review , 1991 .
[8] N. Margolus. Mechanical Systems that are both Classical and Quantum , 2008, 0805.3357.
[9] Norman Margolus,et al. Quantum emulation of classical dynamics , 2011, ArXiv.
[10] T. Toffoli,et al. Conservative logic , 2002, Collision-Based Computing.
[11] John von Neumann,et al. Theory Of Self Reproducing Automata , 1967 .
[12] Mark Smith,et al. Representations of geometrical and topological quantities in cellular automata , 1991 .
[13] J. Bekenstein. Universal upper bound on the entropy-to-energy ratio for bounded systems , 1981, Jacob Bekenstein.
[14] Curious properties of simple random walks , 1993 .
[15] H. Hrgovčić. Discrete representations of the n-dimensional wave equation , 1992 .
[16] Edward Fredkin,et al. A computing architecture for physics , 2005, CF '05.
[17] Bastien Chopard,et al. Cellular Automata Modeling of Physical Systems , 1999, Encyclopedia of Complexity and Systems Science.
[18] E. Pringsheim,et al. On the Law of Distribution of Energy in the Normal Spectrum , 2003 .
[19] J. Kari. Representation of reversible cellular automata with block permutations , 1996, Mathematical systems theory.
[20] Cristopher Moore,et al. New constructions in cellular automata , 2003 .
[21] Tommaso Toffoli,et al. Action, or the fungibility of computation , 1999 .
[22] Stephen Wolfram,et al. A New Kind of Science , 2003, Artificial Life.
[23] N. Margolus,et al. The maximum speed of dynamical evolution , 1997, quant-ph/9710043.
[24] Jérôme Olivier Durand-Lose,et al. Representing Reversible Cellular Automata with Reversible Block Cellular Automata , 2001, DM-CCG.
[25] N. Margolus. The maximum average rate of state change , 2011 .
[26] Norman H. Margolus,et al. Crystalline computation , 1998, comp-gas/9811002.
[27] Tommaso Toffoli,et al. Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.
[28] Julia Eichmann,et al. Lattice Gas Hydrodynamics , 2016 .
[29] Norman Margolus,et al. The finite-state character of physical dynamics , 2011, 1109.4994.
[30] N. Margolus. Physics-like models of computation☆ , 1984 .