Enhanced energy-constrained quantum communication over bosonic Gaussian channels

Quantum communication is an important branch of quantum information science, promising unconditional security to classical communication and providing the building block of a future large-scale quantum network. Noise in realistic quantum communication channels imposes fundamental limits on the communication rates of various quantum communication tasks. It is therefore crucial to identify or bound the quantum capacities of a quantum channel. Here, we consider Gaussian channels that model energy loss and thermal noise errors in realistic optical and microwave communication channels and study their various quantum capacities in the energy-constrained scenario. We provide improved lower bounds to various energy-constrained quantum capacities of these fundamental channels and show that higher communication rates can be attained than previously believed. Specifically, we show that one can boost the transmission rates of quantum information and private classical information by using a correlated multi-mode thermal state instead of the single-mode thermal state of the same energy. The amount of information that a quantum channel can transmit is fundamentally bounded by the amount of noise in the channel. Here, the authors consider the realistic case with loss and thermal noise errors and prove that correlated multi-mode thermal states can achieve higher rates than single-mode ones.

[1]  S. Braunstein,et al.  Physics: Unite to build a quantum Internet , 2016, Nature.

[2]  Timothy C. Ralph,et al.  Quantum information with continuous variables , 2000, Conference Digest. 2000 International Quantum Electronics Conference (Cat. No.00TH8504).

[3]  J. Smolin,et al.  Degenerate quantum codes for Pauli channels. , 2006, Physical review letters.

[4]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[5]  Liang Jiang,et al.  On-demand quantum state transfer and entanglement between remote microwave cavity memories , 2017, 1712.05832.

[6]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[7]  Stefano Pirandola,et al.  Unite to build a quantum internet , 2016 .

[8]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[9]  Stefano Pirandola,et al.  Conditional channel simulation , 2018, Annals of Physics.

[10]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[11]  Stefano Pirandola Bounds for multi-end communication over quantum networks , 2019 .

[12]  P. Shor,et al.  The Capacity of a Quantum Channel for Simultaneous Transmission of Classical and Quantum Information , 2003, quant-ph/0311131.

[13]  M. Wolf,et al.  Quantum capacities of bosonic channels. , 2006, Physical review letters.

[14]  Lee,et al.  Quantum source of entropy for black holes. , 1986, Physical review. D, Particles and fields.

[15]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[16]  Felix Leditzky,et al.  Quantum codes from neural networks , 2018, New Journal of Physics.

[17]  Seth Lloyd,et al.  Direct and reverse secret-key capacities of a quantum channel. , 2008, Physical review letters.

[18]  Shun Watanabe,et al.  Private and quantum capacities of more capable and less noisy quantum channels , 2011, 1110.5746.

[19]  Saikat Guha,et al.  Quantum trade-off coding for bosonic communication , 2011, ArXiv.

[20]  P. Shor,et al.  Broadband channel capacities , 2003, quant-ph/0307098.

[21]  Joseph M. Renes,et al.  Coherent-state constellations and polar codes for thermal Gaussian channels , 2016, 1603.05970.

[22]  V. Vedral The role of relative entropy in quantum information theory , 2001, quant-ph/0102094.

[23]  David Elkouss,et al.  Unbounded number of channel uses may be required to detect quantum capacity , 2014, Nature Communications.

[24]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[25]  Samuel L. Braunstein,et al.  Secret key capacity of the thermal-loss channel: improving the lower bound , 2016, Security + Defence.

[26]  David Pérez-García,et al.  Are problems in Quantum Information Theory (un)decidable? , 2011, ArXiv.

[27]  Alexander S. Holevo,et al.  One-mode quantum Gaussian channels: Structure and quantum capacity , 2007, Probl. Inf. Transm..

[28]  K. Birgitta Whaley,et al.  Lower bounds on the nonzero capacity of Pauli channels , 2008 .

[29]  R. Werner,et al.  Evaluating capacities of bosonic Gaussian channels , 1999, quant-ph/9912067.

[30]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[31]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[32]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[34]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[35]  John Preskill,et al.  Achievable rates for the Gaussian quantum channel , 2001, quant-ph/0105058.

[36]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[37]  Graeme Smith,et al.  Quantum Communication with Zero-Capacity Channels , 2008, Science.

[38]  Igor Devetak,et al.  Capacity theorems for quantum multiple-access channels: classical-quantum and quantum-quantum capacity regions , 2008, IEEE Transactions on Information Theory.

[39]  V. Giovannetti,et al.  Narrow bounds for the quantum capacity of thermal attenuators , 2018, Nature Communications.

[40]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[41]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[42]  Soojoon Lee,et al.  Activation and superactivation of single-mode Gaussian quantum channels , 2019, Physical Review A.

[43]  G. Vallone,et al.  Advances in Quantum Cryptography , 2019, 1906.01645.

[44]  L. Banchi,et al.  Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.

[45]  Stefano Mancini,et al.  Capacities of lossy bosonic channel with correlated noise , 2009 .

[46]  M. Nielsen,et al.  Quantum information theory , 2010 .

[47]  Stefano Mancini,et al.  Algorithmic complexity of quantum capacity , 2016, Quantum Inf. Process..

[48]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[49]  Charles H. Bennett,et al.  WITHDRAWN: Quantum cryptography: Public key distribution and coin tossing , 2011 .

[50]  V. Giovannetti,et al.  Degradability of bosonic Gaussian channels , 2006, quant-ph/0603257.

[51]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[52]  D. Leung,et al.  Dephrasure Channel and Superadditivity of Coherent Information. , 2018, Physical review letters.

[53]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[54]  Soojoon Lee,et al.  Activation of the quantum capacity of Gaussian channels , 2018, Physical Review A.

[55]  J. Smolin,et al.  Quantum communication with Gaussian channels of zero quantum capacity , 2011 .

[57]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[58]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[59]  P. Shor,et al.  QUANTUM-CHANNEL CAPACITY OF VERY NOISY CHANNELS , 1997, quant-ph/9706061.

[60]  Liang Jiang,et al.  Intracity quantum communication via thermal microwave networks , 2016, 1611.10241.

[61]  Stefano Pirandola,et al.  End-to-end capacities of a quantum communication network , 2019, Communications Physics.

[62]  Liang Jiang,et al.  Quantum Capacity Bounds of Gaussian Thermal Loss Channels and Achievable Rates With Gottesman-Kitaev-Preskill Codes , 2018, IEEE Transactions on Information Theory.

[63]  Seth Lloyd,et al.  Reverse coherent information. , 2008, Physical review letters.

[64]  A. Holevo,et al.  One-mode bosonic Gaussian channels: a full weak-degradability classification , 2006, quant-ph/0609013.

[65]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[66]  Masahito Hayashi Erratum to: Quantum Information Theory , 2017 .