The cover time of the giant component of a random graph

We study the cover time of a random walk on the largest component of the random graph Gn,p. We determine its value up to a factor 1 + o(1) whenever np = c > 1, c = O(lnn). In particular we show that the cover time is not monotone for c = Θ(lnn). We also determine the cover time of the k-cores, k ≥ 2.

[1]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[2]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[3]  Boris G. Pittel,et al.  On Tree Census and the Giant Component in Sparse Random Graphs , 1990, Random Struct. Algorithms.

[4]  Uriel Feige,et al.  A Tight Upper Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[5]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[6]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[7]  B. Reed,et al.  The Evolution of the Mixing Rate , 2007, math/0701474.

[8]  C. Geiss,et al.  An introduction to probability theory , 2008 .

[9]  David Zuckerman On the Time to Traverse all Edges of a Graph , 1991, Inf. Process. Lett..

[10]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[11]  Alan M. Frieze,et al.  The cover time of sparse random graphs. , 2003, SODA '03.

[12]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[13]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[14]  I. Pinelis On inequalities for sums of bounded random variables , 2006, math/0603030.

[15]  Alan M. Frieze,et al.  The cover time of the preferential attachment graph , 2007, J. Comb. Theory, Ser. B.

[16]  Alan M. Frieze,et al.  The Cover Time of Random Regular Graphs , 2005, SIAM J. Discret. Math..

[17]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[18]  Uriel Feige,et al.  A Tight Lower Bound on the Cover Time for Random Walks on Graphs , 1995, Random Struct. Algorithms.

[19]  Johan Jonasson On the Cover Time for Random Walks on Random Graphs , 1998, Comb. Probab. Comput..

[20]  David J. Aldous,et al.  Lower bounds for covering times for reversible Markov chains and random walks on graphs , 1989 .

[21]  Colin Cooper,et al.  The cores of random hypergraphs with a given degree sequence , 2004, Random Struct. Algorithms.