Asymptotically dense spherical codes - Part h Wrapped spherical codes

A new class of spherical codes called wrapped spherical codes is constructed by "wrapping" any sphere packing /spl Lambda/ in Euclidean space onto a finite subset of the unit sphere in one higher dimension. The mapping preserves much of the structure of /spl Lambda/, and unlike previously proposed maps, the density of the wrapped spherical codes approaches the density of /spl Lambda/ as the minimum distance approaches zero. We show that this implies that the asymptotically maximum spherical coding density is achieved by wrapped spherical codes whenever /spl Lambda/ is the densest possible sphere packing.

[1]  Jon Hamkins,et al.  Asymptotically dense spherical codes - Part II: Laminated spherical codes , 1997, IEEE Trans. Inf. Theory.

[2]  Victor Zinoviev,et al.  Spherical codes generated by binary partitions of symmetric pointsets , 1995, IEEE Trans. Inf. Theory.

[3]  Lane A. Hemaspaandra,et al.  Using simulated annealing to design good codes , 1987, IEEE Trans. Inf. Theory.

[4]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[5]  Victor Zinoviev,et al.  On spherical codes generating the kissing number in dimensions 8 and 24 , 1992, Discret. Math..

[6]  Jaakko Astola The Tietäväinen bound for spherical codes , 1984, Discret. Appl. Math..

[7]  John R. Rice,et al.  SYSTEMATIC SEARCH IN HIGH DIMENSIONAL SETS , 1977 .

[8]  Wu-Yi Hsiang,et al.  A Rejoinder to Hales’s Article , 1995 .

[9]  Claude Lamblin,et al.  Baseband speech coding at 2400 bps using "Spherical vector quantization" , 1984, ICASSP.

[10]  W. Hsiang ON THE SPHERE PACKING PROBLEM AND THE PROOF OF KEPLER'S CONJECTURE , 1993 .

[11]  D. Slepian Permutation Modulation , 1965, Encyclopedia of Wireless Networks.

[12]  Jon Hamkins,et al.  Design and analysis of spherical codes , 1996 .

[13]  William R. Smith,et al.  Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited , 1977 .

[14]  Jacques Stern,et al.  Polynomial-time construction of codes II. Spherical codes and the kissing number of spheres , 1994, IEEE Trans. Inf. Theory.

[15]  J. Massey,et al.  Communications and Cryptography: Two Sides of One Tapestry , 1994 .

[16]  N. J. A. Sloane,et al.  Tables of sphere packings and spherical codes , 1981, IEEE Trans. Inf. Theory.

[17]  John K. Karlof Decoding spherical codes for the Gaussian channel , 1993, IEEE Trans. Inf. Theory.

[18]  C. A. Rogers The Packing of Equal Spheres , 1958 .

[19]  Carlos R. P. Hartmann,et al.  Iteratively maximum likelihood decodable spherical codes and a method for their construction , 1988, IEEE Trans. Inf. Theory.

[20]  A. Vardy A new sphere packing in 20 dimensions , 1995 .

[21]  Ezio Biglieri,et al.  Optimum permutation modulation codes and their asymptotic performance (Corresp.) , 1976, IEEE Trans. Inf. Theory.

[22]  L. Tóth Kugelunterdeckungen und Kugelüberdeckungen in Räumen konstanter Krümmung , 1959 .

[23]  K. Böröczky Packing of spheres in spaces of constant curvature , 1978 .

[24]  Jiapeng Gao Iteratively Maximum Likelihood Decodable Spherical Codes , 1984 .

[25]  J. Seidel,et al.  SPHERICAL CODES AND DESIGNS , 1991 .

[26]  J. H. Lindsey,et al.  Sphere packing in R 3 , 1986 .

[27]  D. Kottwitz The densest packing of equal circles on a sphere , 1991 .

[28]  T. Hales The status of the kepler conjecture , 1994 .

[29]  A. G. Burr Spherical codes for M-ary code shift keying , 1989 .

[30]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[31]  N. J. A. Sloane,et al.  A lower bound on the average error of vector quantizers , 1985, IEEE Trans. Inf. Theory.

[32]  A. D. McLaren,et al.  Optimal numerical integration on a sphere , 1963 .

[33]  K. J. Nurmella Constructing Spherical Codes by Global Optimization Methods , 1995 .

[34]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[35]  J. H. Conway,et al.  The antipode construction for sphere packings , 1996 .

[36]  Victor Zinoviev,et al.  Spherical Codes From the Hexagonal Lattice , 1994 .

[37]  Jean-Pierre Adoul,et al.  Nearest neighbor algorithm for spherical codes from the Leech lattice , 1988, IEEE Trans. Inf. Theory.

[38]  A. Wyner Capabilities of bounded discrepancy decoding , 1965 .

[39]  K. Zeger,et al.  Asymptotically optimal spherical codes , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[40]  R. Rankin The Closest Packing of Spherical Caps in n Dimensions , 1955, Proceedings of the Glasgow Mathematical Association.

[41]  H. S. M. Coxeter,et al.  Twelve Geometric Essays , 1968 .

[42]  A. Wyner Random packings and coverings of the unit n-sphere , 1967 .

[43]  Danyo Danev,et al.  Upper bounds on the minimum distance of spherical codes , 1996, IEEE Trans. Inf. Theory.