Nearest neighbor conditional estimation for Harris recurrent Markov chains

This paper is concerned with consistent nearest neighbor time series estimation for data generated by a Harris recurrent Markov chain on a general state space. It is shown that nearest neighbor estimation is consistent in this general time series context, using simple and weak conditions. The results proved here, establish consistency, in a unified manner, for a large variety of problems, e.g. autoregression function estimation, and, more generally, extremum estimators as well as sequential forecasting. Finally, under additional conditions, it is also shown that the estimators are asymptotically normal.

[1]  Sidney I. Resnick,et al.  Extremal behaviour of solutions to a stochastic difference equation with applications to arch processes , 1989 .

[2]  Weak dependence beyond mixing and asymptotics for nonparametric regression , 2002 .

[3]  P. Doukhan,et al.  A new weak dependence condition and applications to moment inequalities , 1999 .

[4]  Dudley,et al.  Real Analysis and Probability: Measurability: Borel Isomorphism and Analytic Sets , 2002 .

[5]  Paul Doukhan,et al.  WEAK DEPENDENCE: MODELS AND APPLICATIONS TO ECONOMETRICS , 2004, Econometric Theory.

[6]  O. Scherzer,et al.  Weakly Differentiable Functions , 2009 .

[7]  Sidney Resnick,et al.  Smoothing the Moment Estimator of the Extreme Value Parameter , 1999 .

[8]  João Nicolau STATIONARY PROCESSES THAT LOOK LIKE RANDOM WALKS— THE BOUNDED RANDOM WALK PROCESS IN DISCRETE AND CONTINUOUS TIME , 2002, Econometric Theory.

[9]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[10]  Weak Convergence of Laws on ℝK with Common Marginals , 2006, math/0606462.

[11]  L. Breiman Heuristics of instability and stabilization in model selection , 1996 .

[12]  D. Buraczewski,et al.  On the invariant measure of the random difference equation $X_n=A_n X_{n-1}+ B_n$ in the critical case , 2008, 0809.1864.

[13]  D. McLeish Dependent Central Limit Theorems and Invariance Principles , 1974 .

[14]  S. Levental A uniform CLT for uniformly bounded families of martingale differences , 1989 .

[15]  M. Meerschaert Regular Variation in R k , 1988 .

[16]  Qiwei Yao,et al.  Approximating conditional distribution functions using dimension reduction , 2005 .

[17]  A. Dawid,et al.  Prequential probability: principles and properties , 1999 .

[18]  P. Bougerol,et al.  The random difference equation $X\sb n=A\sb nX\sb {n-1}+B\sb n$ in the critical case , 1997 .

[19]  J. A. Clarkson,et al.  On definitions of bounded variation for functions of two variables , 1933 .

[20]  R. Pyke,et al.  Weak Convergence of Empirical Processes , 2022 .

[21]  Emmanuel Guerre,et al.  Design-Adaptive Pointwise Non-Parametric Regression Estimation for Recurrent Markov Time Series , 2004 .

[22]  L. Rogers,et al.  Diffusions, Markov processes, and martingales , 1979 .

[23]  A. Timmermann Forecast Combinations , 2005 .

[24]  Boris Polyak,et al.  Acceleration of stochastic approximation by averaging , 1992 .

[25]  C. Granger,et al.  Handbook of Economic Forecasting , 2006 .

[26]  Qi Li Nonparametric econometrics , 2006 .

[27]  P. Robinson NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .

[28]  Tomasz Rychlik Distributions and expectations of order statistics for possibly dependent random variables , 1994 .

[29]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[30]  Michel Loève,et al.  Probability Theory I , 1977 .

[31]  P. Doukhan Mixing: Properties and Examples , 1994 .

[32]  P. Bertail,et al.  Regenerative block bootstrap for Markov chains , 2006 .

[33]  Dag Tjøstheim,et al.  Nonparametric estimation in null recurrent time series , 2001 .

[34]  Jim Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[35]  S. Yakowitz Nearest neighbor regression estimation for null-recurrent Markov time series , 1993 .

[36]  J. Dedecker,et al.  New dependence coefficients. Examples and applications to statistics , 2005 .

[37]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[38]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[39]  英敦 塚原 Aad W. van der Vaart and Jon A. Wellner: Weak Convergence and Empirical Processes: With Applications to Statistics, Springer,1996年,xvi + 508ページ. , 2009 .

[40]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[41]  Stephen S. Wilson,et al.  Random iterative models , 1996 .

[42]  H. Teicher,et al.  Probability theory: Independence, interchangeability, martingales , 1978 .

[43]  A. Dawid,et al.  On Testing the Validity of Sequential Probability Forecasts , 1993 .

[44]  L. Devroye On the Almost Everywhere Convergence of Nonparametric Regression Function Estimates , 1981 .

[45]  E. Masry Nonparametric regression estimation for dependent functional data: asymptotic normality , 2005 .

[46]  H. Rootzén,et al.  External Theory for Stochastic Processes. , 1988 .

[47]  Xia Chen,et al.  How Often Does a Harris Recurrent Markov Chain Recur , 1999 .

[48]  K. J. Garderen,et al.  Curved Exponential Models in Econometrics , 1997, Econometric Theory.

[49]  B. Lenze On the Points of Regularity of Multivariate Functions of Bounded Variation , 2004 .

[50]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[51]  Holger Rootzan,et al.  Extremal Theory for Stochastic Processes , 2008 .

[52]  Joel L. Horowitz,et al.  Bootstrap Methods for Markov Processes , 2003 .

[53]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[54]  Allan Timmermann,et al.  Forecast Combination With Entry and Exit of Experts , 2006 .