Microwave-assisted Low-temperature Growth of Thin Films in Solution

Thin films find a variety of technological applications. Assembling thin films from atoms in the liquid phase is intrinsically a non-equilibrium phenomenon, controlled by the competition between thermodynamics and kinetics. We demonstrate here that microwave energy can assist in assembling atoms into thin films directly on a substrate at significantly lower temperatures than conventional processes, potentially enabling plastic-based electronics. Both experimental and electromagnetic simulation results show microwave fields can selectively interact with a conducting layer on the substrate despite the discrepancy between the substrate size and the microwave wavelength. The microwave interaction leads to localized energy absorption, heating, and subsequent nucleation and growth of the desired films. Electromagnetic simulations show remarkable agreement with experiments and are employed to understand the physics of the microwave interaction and identify conditions to improve uniformity of the films. The films can be patterned and grown on various substrates, enabling their use in widespread applications.

[1]  C. Tai,et al.  Dyadic green functions in electromagnetic theory , 1994 .

[2]  David Turnbull,et al.  Kinetics of Heterogeneous Nucleation , 1950 .

[3]  Xavier Domènech,et al.  Preparation of anatase powders from fluorine-complexed titanium(iv) aqueous solution using microwave irradiation , 2000 .

[4]  A. E. Yilmaz,et al.  A Practical Implementation and Comparative Assessment of the Radial-Angular-Transform Singularity Cancellation Method , 2011, IEEE Transactions on Antennas and Propagation.

[5]  Kiyoshi Kanamura,et al.  Fabrication of thin film electrodes for all solid state rechargeable lithium batteries , 2003 .

[6]  Markus Niederberger,et al.  Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application , 2009 .

[7]  J. A. Venables,et al.  Rate equation approaches to thin film nucleation kinetics , 1973 .

[8]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[9]  Mircea Chipara,et al.  Convenient, Rapid Synthesis of Ag Nanowires , 2007 .

[10]  Prabir K. Dutta,et al.  Interaction of Carbon Monoxide with Anatase Surfaces at High Temperatures: Optimization of a Carbon Monoxide Sensor , 1999 .

[11]  Qi-Zong Qin,et al.  A “Lithium-Free” Thin-Film Battery with an Unexpected Cathode Layer , 2008 .

[12]  B. Vaidhyanathan,et al.  Synthesis of inorganic solids using microwaves , 1999 .

[13]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[14]  Jihan Kim,et al.  Fabrication of LiMn2O4 thin films by sol–gel method for cathode materials of microbattery , 1998 .

[15]  R. Poirier,et al.  I‐V and C‐V characteristics of Au/TiO2 Schottky diodes , 1980 .

[16]  Bernhard Gutmann,et al.  Microwave chemistry in silicon carbide reaction vials: separating thermal from nonthermal effects. , 2009, Angewandte Chemie.

[17]  Michael D. McGehee,et al.  Photovoltaic cells made from conjugated polymers infiltrated into mesoporous titania , 2003 .

[18]  Angel Díaz-Ortiz,et al.  Microwaves in organic synthesis. Thermal and non-thermal microwave effects. , 2005, Chemical Society reviews.

[19]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[20]  N. Dudney,et al.  “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode , 2000 .

[21]  Luigi Carbone,et al.  Microwave-assisted synthesis of colloidal inorganic nanocrystals. , 2011, Angewandte Chemie.

[22]  Phl Peter Notten,et al.  All‐Solid‐State Lithium‐Ion Microbatteries: A Review of Various Three‐Dimensional Concepts , 2011 .

[23]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[24]  J. Souquet,et al.  Thin film lithium batteries , 2002 .

[25]  Ruxandra Vidu,et al.  Lithium cobalt oxide (LiCoO2) nanocoatings by sol-gel methods , 2004 .

[26]  W. Heinrich,et al.  The behavior of the electromagnetic field at edges of media with finite conductivity , 1992 .

[27]  Gyoichi Nogami,et al.  Titanium dioxide thin film deposited by spray pyrolysis of aqueous solution , 1998 .

[28]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[29]  A. Breccia,et al.  Chemistry by microwaves , 1999 .

[30]  R. Harrington,et al.  An impedance sheet approximation for thin dielectric shells , 1975 .

[31]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[32]  Ali E. Yilmaz,et al.  An FFT-Accelerated Integral-Equation Solver for Analyzing Scattering in Rectangular Cavities , 2014, IEEE Transactions on Microwave Theory and Techniques.

[33]  R. Faraji-Dana,et al.  Edge condition of the field and a.c. resistance of a rectangular strip conductor , 1990 .

[34]  N. Dudney,et al.  Solid state thin-film lithium battery systems , 1999 .

[35]  A. Loupy Microwaves in organic synthesis , 2002 .

[36]  G. Tompsett,et al.  How could and do microwaves influence chemistry at interfaces? , 2008, The journal of physical chemistry. B.

[37]  D. Wilton,et al.  A tetrahedral modeling method for electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies , 1984 .

[38]  Giorgio Montaudo,et al.  Primary thermal degradation mechanisms of PET and PBT , 1993 .

[39]  J. Bladel Singular electromagnetic fields and sources , 1996 .

[40]  Philippe Knauth,et al.  Nanostructured negative electrodes based on titania for Li-ion microbatteries , 2011 .

[41]  Hailin Xue,et al.  TiO2 based metal-semiconductor-metal ultraviolet photodetectors , 2007 .

[42]  J. Hanson,et al.  Nanostructured oxides in chemistry: characterization and properties. , 2004, Chemical reviews.

[43]  M. Petty,et al.  Characterization and Properties , 1990 .

[44]  Wolfgang Kowalsky,et al.  Microwave annealing of polymer solar cells with various transparent anode materials , 2010 .

[45]  Markus Niederberger,et al.  Kinetic and thermodynamic aspects in the microwave-assisted synthesis of ZnO nanoparticles in benzyl alcohol. , 2009, ACS nano.

[46]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[47]  H. Jehn Nucleation and Growth of Thin Films , 1992 .

[48]  Xavier Domènech,et al.  TiO2 thin film deposition from solution using microwave heating , 2000 .