Spectroscopic properties and laser performance of Tm3+-doped NaLa(MoO4)2 crystal

Detailed polarized spectral properties of Tm3+:NaLa(MoO4)2 crystal have been investigated. The polarized absorption spectra, polarized fluorescence spectra, and fluorescence decay curves were measured at room temperature. The fluorescence decay mechanisms of the G14 and H34 multiplets were discussed. Spectroscopic parameters related to the laser operation at around 1.9 μm via the F34→H36 transition have been evaluated. Room-temperature quasi-cw 1.9 μm laser emission from a Ti:sapphire laser pumped Tm3+:NaLa(MoO4)2 crystal has been demonstrated. The maximum output power of 0.5 W has been achieved with a slope efficiency of 50%.

[1]  F. Cussó,et al.  Characterization of up-conversion processes in Tm3+-doped LiNbO3 , 2007 .

[2]  Xavier Mateos,et al.  Broadly tunable laser operation near 2μm in a locally disordered crystal of Tm 3+ -doped NaGd(WO 4 ) 2 , 2006 .

[3]  A. Popov,et al.  Growth and spectroscopic investigations of Yb3+-doped NaGd(MoO4)2 and NaLa(MoO4)2—new promising laser crystals , 2006 .

[4]  X. Mateos,et al.  Efficient 2-$mu$m Continuous-Wave Laser Oscillation of Tm$^3 + $:KLu(WO$_4$)$_2$ , 2006, IEEE Journal of Quantum Electronics.

[5]  N. Coluccelli,et al.  Tunability range of 245 nm in a diode-pumped Tm:BaY2F8 laser at 1.9 μm: a theoretical and experimental investigation , 2006 .

[6]  Daniel Jaque,et al.  Spectroscopic characterisation of the Tm3+ doped KLa(WO4)2 single crystals , 2006 .

[7]  V. A. Romanyuk,et al.  Longitudinally diode-pumped 1.06-{mu}m Nd{sup 3+}:NaLa(MoO{sub 4}){sub 2} laser without pump-wavelength stabilisation , 2006 .

[8]  Nikolay V. Kuleshov,et al.  CW and Q-switched diode-pumped laser operation of Yb3+:NaLa(MoO4)2 , 2005, International Conference on Lasers, Applications, and Technologies.

[9]  M. Tonelli,et al.  Effect of cerium codoping in Er3+,Ce3+:NaLa(MoO4)2 crystals , 2005 .

[10]  F. Xiong,et al.  Spectroscopic properties of Pr3+ in anisotropic PbWO4 crystal , 2005 .

[11]  F. Auzel f–f oscillator strengths, hypersensitivity, branching ratios and quantum efficiencies discussed in the light of forgotten results , 2004 .

[12]  F. Diaz,et al.  Efficient tunable laser operation of Tm:KGd(WO/sub 4/)/sub 2/ in the continuous-wave regime at room temperature , 2004, IEEE Journal of Quantum Electronics.

[13]  Patrice Camy,et al.  Tm3+:CaF2 for 1.9 μm laser operation , 2004 .

[14]  F. Güell,et al.  1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals , 2004 .

[15]  K. Vodopyanov,et al.  Solid-state mid-infrared laser sources , 2003 .

[16]  F. Güell,et al.  Crystal growth and spectroscopic characterization of Tm 3¿ -doped KYbÑWO 4 Ö 2 single crystals , 2002 .

[17]  Daniel W. Hewak,et al.  Spectroscopic properties and energy transfer parameters of Tm3+ ions in gallium lanthanum sulfide glass , 2002 .

[18]  L. Nunes,et al.  Microscopic and macroscopic parameters of energy transfer between 'Tm POT.3+' ions in fluoroindogallate glasses , 2002 .

[19]  A. Hernandes,et al.  Evidence of higher-order mechanisms than dipole-dipole interaction in Tm 3+ -->Tm 3+ energy transfer in fluoroindogallate glasses , 2002 .

[20]  V. A. Pashkov,et al.  SRS lasers with self-conversion of radiation frequency based on NaLa(MoO4)2:Nd 3+ and KGd(WO4)2:Nd3+crystals , 2001, Laser Optics.

[21]  P B Phua,et al.  120-W continuous-wave diode-pumped Tm:YAG laser. , 2000, Optics letters.

[22]  J. Heo,et al.  Effect of Tb3+ co-doping on the electron population densities of Tm3+ in Ge–As–Ga–S glasses , 2000 .

[23]  B. Viana,et al.  Spectroscopic evidence of inhomogeneous distribution of Nd3+ in YVO4, YPO4 and YAsO4 crystals , 2000 .

[24]  D. Jaque,et al.  Energy transfer with migration. Generalization of the Yokota–Tanimoto model for any kind of multipole interaction , 1999 .

[25]  Norman P. Barnes,et al.  Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm3+ and Ho3+ ions in LiYF4 , 1998 .

[26]  Chen Xueyuan,et al.  Judd-Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements , 1997 .

[27]  M. Malinowski,et al.  Dynamics of the high lying excited states of Tm3+ ions in YAG , 1996 .

[28]  A. A. Pavlyuk,et al.  Efficient multiwave Stokes and anti-Stokes operation of a Raman parametric laser based on a tetragonal NaLa(MoO4)2 crystal , 1996 .

[29]  S. Y. Wang,et al.  Pressure-induced amorphization in NaLa (MoO4)2; A high pressure Raman and IR absorption study , 1995 .

[30]  L. Esterowitz,et al.  Tm(3+):YLF laser continuously tunable between 2.20 and 2.46 microm. , 1994, Optics letters.

[31]  H. Saito,et al.  Spectroscopic characterization of Tm3+:YVO4 crystal as an efficient diode pumped laser source near 2000 nm , 1993 .

[32]  T. H. Allik,et al.  Spectroscopic analysis of Tm3+:NaLa(MoO4)2 , 1992 .

[33]  Morrison,et al.  NaLa(MoO4)2 as a laser host material. , 1991, Physical review. B, Condensed matter.

[34]  B. Aull,et al.  Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections , 1982 .

[35]  J. Nella,et al.  Characteristics of room-temperature 2.3-µm laser emission from tm3+in YAG and YAlO3 , 1975, IEEE Journal of Quantum Electronics.

[36]  Marvin J. Weber,et al.  Luminescence Decay by Energy Migration and Transfer: Observation of Diffusion-Limited Relaxation , 1971 .

[37]  M. Yokota,et al.  Effects of Diffusion on Energy Transfer by Resonance , 1967 .

[38]  W. Krupke OPTICAL ABSORPTION AND FLUORESCENCE INTENSITIES IN SEVERAL RARE-EARTH-DOPED Y$sub 2$O$sub 3$ AND LaF$sub 3$ SINGLE CRYSTALS , 1966 .

[39]  M. Inokuti,et al.  Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence , 1965 .

[40]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .

[41]  Edward W. Johnson,et al.  ASWEPS Shipboard System-A New Concept in the Automated Collection of Oceanographic Data , 1962, Proceedings of the IRE.

[42]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[43]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[44]  W. Blumberg Nuclear Spin-Lattice Relaxation Caused by Paramagnetic Impurities , 1960 .