Plastic Properties of Polycrystalline f.c.c. Metals

For polycrystalline f.c.c. metals deformed by torsion and extension simultaneously it is shown that the change in specific resistivity depends only upon the total strain, (as given by [4]), but is independent of the ratio of the individual strains. Furthermore it is shown that the relation of the form Δϱ = f(γ) cannot be characteristic to a metal, since its form is very sensitive to sample history. A history-independent relation can however be established between the resistivity change and the instantaneous flow stress. Assuming the resistivity due to the point defects to be half of the total resistivity, this relationship gives the resistivity due to unit length of a dislocation directly, the value being in good agreement with previous experimental and theoretical estimates. Fur polykristalline kfz-Metalle, die gleichzeitig durch Scherung und Dehnung deformiert wurden, wird in Ubereinstimmung mit den Ergebnissen von [4] gezeigt, das die spezifische Widerstandsanderung von der Gesamtbelastung abhangt und unabhangig ist von dem Verhaltnis der Einzelbelastungen. Ferner wird gezeigt, das eine Beziehung der Form Δϱ = f(γ) fur ein Metall nicht charakteristisch sein kann, da seine Form sehr erheblich von der Vorgeschichte der Probe abhangt. Es kann jedoch eine von der Vorgeschichte der Probe unabhangige Beziehung zwischen der Widerstandsanderung und der momentanen Flusspannung hergeleitet werden. Unter der Bedingung, das der Widerstand, der von Punktdefekten herruhrt, halb so gros ist wie der Gesamtwiderstand, ergibt diese Beziehung in guter Ubereinstimmung mit fruheren experimentellen und theoretischen Abschatzungen direkt den Widerstand einer Versetzung (pro Einheitslange).

[1]  E. Kappler,et al.  Über die Ermittlung der Verfestigungskurve durch den Torsionsversuch an zylindrischen Vollstäben und das Verhalten von vielkristallinem Kupfer bei sehr hoher plastischer Schubverformung , 1964, August 1.

[2]  P. Feltham On the Formation of Point Defects in Metals by Plastic Deformation , 1964, July 1.

[3]  P. Feltham,et al.  Resistivity changes in silver due to plastic deformation , 1964 .

[4]  N. Akulov The statistical theory of dislocations , 1964 .

[5]  M. Doyama,et al.  QUENCHING AND ANNEALING OF ZONE REFINED ALUMINUM , 1964 .

[6]  J. V. Kuijk The change of resistivity of Rh after cold work , 1964 .

[7]  A. Howie,et al.  THE ELECTRICAL RESISTIVITY OF DISLOCATIONS , 1963 .

[8]  P. Feltham Stress relaxation and dynamic recovery in cobalt at low temperatures , 1963 .

[9]  H. Peiffer A possible verification of dislocation uncertainty as applied to point defect production , 1963 .

[10]  J. E. Bailey The dislocation density, flow stress and stored energy in deformed polycrystalline copper , 1963 .

[11]  H. Peiffer Effect of Prior Deformation and Recovery on the Defect Concentration Increase During Plastic Deformation , 1963 .

[12]  I. Kovács,et al.  Electrical Resistivity Change of Silver and Gold Due to Large Plastic Strains , 1963 .

[13]  P. Feltham,et al.  Determination of the Work‐Hardening Characteristics of Metals at Large Strains by Means of Torsion , 1963 .

[14]  R. Simmons,et al.  Measurement of Equilibrium Concentrations of Vacancies in Copper , 1963 .

[15]  M. Loretto,et al.  Electrical resistivity of dislocations in face-centred cubic metals , 1962 .

[16]  M. Loretto,et al.  Stored energy and electrical resistivity in deformed metals , 1961 .

[17]  C. Pistorius Influence of plastic stretching on the resistivity of aluminium , 1961 .

[18]  J. E. Bailey,et al.  The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver , 1960 .

[19]  John Henry Poynting,et al.  On the changes in the dimensions of a steel wire when twisted, and on the pressure of distortional waves in steel , 1912 .