Decomposing solar and geomagnetic activity and seasonal dependencies to examine the relationship between GPS loss of lock and ionospheric turbulence

[1]  I. Coco,et al.  Ionospheric Turbulence: A Challenge for GPS Loss of Lock Understanding , 2022, Space Weather.

[2]  L. Clausen,et al.  Turbulence and Intermittency in the Winter Cusp Ionosphere Studied With the ICI Sounding Rockets , 2021, Journal of Geophysical Research: Space Physics.

[3]  Giuseppe Consolini,et al.  Occurrence of GPS Loss of Lock Based on a Swarm Half-Solar Cycle Dataset and Its Relation to the Background Ionosphere , 2021, Remote. Sens..

[4]  I. Coco,et al.  Looking for a proxy of the ionospheric turbulence with Swarm data , 2021, Scientific Reports.

[5]  Giuseppe Consolini,et al.  Ionospheric Turbulence and the Equatorial Plasma Density Irregularities: Scaling Features and RODI , 2021, Remote. Sens..

[6]  I. Coco,et al.  On the 2015 St. Patrick's Storm Turbulent State of the Ionosphere: Hints From the Swarm Mission , 2020, Journal of Geophysical Research: Space Physics.

[7]  L. Clausen,et al.  Ionospheric Plasma Irregularities Based on In Situ Measurements From the Swarm Satellites , 2020, Journal of Geophysical Research: Space Physics.

[8]  Alberto Bigazzi,et al.  Lower-thermosphere response to solar activity: an empirical-mode-decomposition analysis of GOCE 2009–2012 data , 2020 .

[9]  Siqing Liu,et al.  Statistical Analysis of the Main Ionospheric Trough Using Swarm in Situ Measurements , 2020, Journal of Geophysical Research: Space Physics.

[10]  J. Berdermann,et al.  Long-term trends in the ionospheric response to solar extreme-ultraviolet variations , 2019 .

[11]  L. Clausen,et al.  Ionospheric Plasma Irregularities Characterized by the Swarm Satellites: Statistics at High Latitudes , 2019, Journal of Geophysical Research: Space Physics.

[12]  I. Coco,et al.  Characterising the electron density fluctuations in the high-latitude ionosphere at Swarm altitude in response to the geomagnetic activity , 2018, Annals of Geophysics.

[13]  Jaeheung Park,et al.  Climatology of GPS signal loss observed by Swarm satellites , 2018 .

[14]  Cathryn N. Mitchell,et al.  Annual Occurrence Rates of Ionospheric Polar Cap Patches Observed Using Swarm , 2018 .

[15]  G. Consolini,et al.  Scaling Features of High‐Latitude Geomagnetic Field Fluctuations at Swarm Altitude: Impact of IMF Orientation , 2017 .

[16]  J. Wahlund,et al.  Thermal ion imagers and Langmuir probes in the Swarm electric field instruments , 2017 .

[17]  K. Laundal,et al.  Magnetic Coordinate Systems , 2016, 1611.10321.

[18]  M. Pezzopane,et al.  foF2 vs solar indices for the Rome station: Looking for the best general relation which is able to describe the anomalous minimum between cycles 23 and 24 , 2016 .

[19]  Chao Xiong,et al.  The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities , 2016 .

[20]  Giuseppe Consolini,et al.  Observations of high-latitude geomagnetic field fluctuations during St. Patrick’s Day storm: Swarm and SuperDARN measurements , 2016, Earth, Planets and Space.

[21]  L. Clausen,et al.  Plasma turbulence and coherent structures in the polar cap observed by the ICI‐2 sounding rocket , 2015 .

[22]  Pieter Visser,et al.  Precise science orbits for the Swarm satellite constellation , 2015 .

[23]  Giuseppe Consolini,et al.  Magnetic field fluctuation features at Swarm's altitude: A fractal approach , 2015 .

[24]  Franz Zangerl,et al.  SWARM observations of equatorial electron densities and topside GPS track losses , 2015 .

[25]  Andrzej Krankowski,et al.  Approaches for modeling ionosphere irregularities based on the TEC rate index , 2014, Earth, Planets and Space.

[26]  J. Moen,et al.  GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison , 2014 .

[27]  W. Miloch,et al.  Direct evidence of double‐slope power spectra in the high‐latitude ionospheric plasma , 2014 .

[28]  Jong-Uk Park,et al.  Long‐term analysis of ionospheric polar patches based on CHAMP TEC data , 2013 .

[29]  V. Pierrard,et al.  The 3D model of the plasmasphere coupled to the ionosphere , 2011 .

[30]  D. Drob,et al.  A computationally compact representation of Magnetic-Apex and Quasi-Dipole coordinates with smooth base vectors , 2009 .

[31]  H. Carlson,et al.  Case for a new process, not mechanism, for cusp irregularity production , 2007 .

[32]  J. Lemaire,et al.  The Plasmasphere Boundary Layer , 2004 .

[33]  Keith M. Groves,et al.  Specification and forecasting of scintillations in communication/navigation links: current status and future plans , 2002 .

[34]  Paul M. Kintner,et al.  Fading timescales associated with GPS signals and potential consequences , 2001 .

[35]  P. Foukal Extension of the F10.7 Index to 1905 using Mt. Wilson Ca K Spectroheliograms , 1998 .

[36]  R. Heelis,et al.  Spatial distribution of ionospheric plasma and field structures in the high‐latitude F region , 1998 .

[37]  Alan S. Rodger,et al.  Diurnal and seasonal occurrence of polar patches , 1996 .

[38]  A. Richmond Ionospheric Electrodynamics Using Magnetic Apex Coordinates. , 1995 .

[39]  S. Basu,et al.  Plasma structuring by the gradient drift instability at high latitudes and comparison with velocity shear driven processes , 1990 .

[40]  G. Ganguli,et al.  Large velocity shears and associated electrostatic waves and turbulence in the auroral F region , 1989 .

[41]  Tsunoda,et al.  High-latitude F-region irregularities: a review and synthesis. Technical report, 1 January 1986-1 July 1987 , 1988 .

[42]  J. Berthelier,et al.  Unstable density gradients in the high‐latitude ionosphere , 1985 .

[43]  A. Pellinen-Wannberg,et al.  DIRECT EVIDENCE OF PLASMA-DENSITY STRUCTURING IN THE AURORAL F-REGION IONOSPHERE , 1985 .

[44]  Jules Aarons,et al.  UHF scintillation activity over polar latitudes , 1981 .

[45]  P. L. Dyson,et al.  In situ measurements of the spectral characteristics of F region ionospheric irregularities , 1974 .

[46]  Masahisa Sugiura,et al.  Auroral electrojet activity index AE and its universal time variations. , 1966 .

[47]  Alessio Pignalberi,et al.  TITIPy: A Python tool for the calculation and mapping of topside ionosphere turbulence indices , 2021, Comput. Geosci..

[48]  J. Klomp,et al.  A review and synthesis , 2010 .

[49]  H. Lühr,et al.  Swarm An Earth Observation Mission investigating Geospace , 2008 .

[50]  Ezequiel Echer,et al.  Introduction to space weather , 2005 .

[51]  L. Weinstein,et al.  The legacy. , 2004, Journal of gerontological nursing.

[52]  S. Grossmann The Spectrum of Turbulence , 2003 .

[53]  G. Rottman,et al.  Mg II core-to-wing solar index from high resolution GOME data , 1997 .

[54]  H. Mounir,et al.  The small-scale turbulent structure of the high latitude ionosphere : ARCAD-AUREOL-3 observations , 1991 .

[55]  A. Kolmogorov,et al.  The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[56]  P. Fougere,et al.  Simultaneous density and electric field fluctuation spectra associated with velocity shears in the auroral oval , 1988 .