Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype and activation of the innate immune system in the 5q- syndrome

[1]  R. Schneider,et al.  Inflammatory bone marrow microenvironment. , 2019, Hematology. American Society of Hematology. Education Program.

[2]  D. Starczynowski,et al.  Chronic immune response dysregulation in MDS pathogenesis. , 2018, Blood.

[3]  P. Ferrell,et al.  Disordered Immune Regulation and its Therapeutic Targeting in Myelodysplastic Syndromes , 2018, Current Hematologic Malignancy Reports.

[4]  N. Salomonis,et al.  TRAF6 Mediates Basal Activation of NF-κB Necessary for Hematopoietic Stem Cell Homeostasis , 2018, Cell reports.

[5]  P. Ji,et al.  Age-related inflammatory bone marrow microenvironment induces ineffective erythropoiesis mimicking del(5q) MDS , 2017, Leukemia.

[6]  S. Gabriel,et al.  Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular Disease , 2017, The New England journal of medicine.

[7]  W. Hofmann,et al.  Increase of DNA damage and alteration of the DNA damage response in myelodysplastic syndromes and acute myeloid leukemias. , 2017, Leukemia research.

[8]  M. L. Le Beau,et al.  Inhibition of WNT signaling in the bone marrow niche prevents the development of MDS in the Apcdel/+ MDS mouse model. , 2017, Blood.

[9]  Aurelien Dugourd,et al.  Gli1+ Mesenchymal Stromal Cells Are a Key Driver of Bone Marrow Fibrosis and an Important Cellular Therapeutic Target. , 2017, Cell stem cell.

[10]  S. Miyano,et al.  Recurrent genetic defects on chromosome 5q in myeloid neoplasms , 2016, Oncotarget.

[11]  R. Kanaar,et al.  Mesenchymal Inflammation Drives Genotoxic Stress in Hematopoietic Stem Cells and Predicts Disease Evolution in Human Pre-leukemia. , 2016, Cell stem cell.

[12]  C. Chen,et al.  Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche , 2016, Nature Communications.

[13]  S. H. A. Chen,et al.  Massive parallel RNA sequencing of highly purified mesenchymal elements in low-risk MDS reveals tissue-context-dependent activation of inflammatory programs , 2016, Leukemia.

[14]  Michelle C. Chen,et al.  Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9 , 2016, Nature Medicine.

[15]  A. Karsan,et al.  Loss of Tifab, a del(5q) MDS gene, alters hematopoiesis through derepression of Toll-like receptor–TRAF6 signaling , 2015, The Journal of experimental medicine.

[16]  M. Calasanz,et al.  CSNK1A1 mutations and gene expression analysis in myelodysplastic syndromes with del(5q) , 2015, British journal of haematology.

[17]  S. Miyano,et al.  Inherited and Somatic Defects in DDX41 in Myeloid Neoplasms. , 2015, Cancer cell.

[18]  S. Colla,et al.  Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes , 2015, Leukemia.

[19]  K. Döhner,et al.  Frequency and prognostic impact of casein kinase 1A1 mutations in MDS patients with deletion of chromosome 5q , 2015, Leukemia.

[20]  B. Ebert,et al.  Role of casein kinase 1A1 in the biology and targeted therapy of del(5q) MDS. , 2014, Cancer cell.

[21]  David A. Williams,et al.  Aberrant overexpression of CD14 on granulocytes sensitizes the innate immune response in mDia1 heterozygous del(5q) MDS. , 2014, Blood.

[22]  M. L. Le Beau,et al.  Haploinsufficiency of del(5q) genes, Egr1 and Apc, cooperate with Tp53 loss to induce acute myeloid leukemia in mice. , 2014, Blood.

[23]  M. L. Le Beau,et al.  Cell intrinsic and extrinsic factors synergize in mice with haploinsufficiency for Tp53, and two human del(5q) genes, Egr1 and Apc. , 2014, Blood.

[24]  B. Ebert,et al.  Deletion 5q MDS: molecular and therapeutic implications. , 2013, Best practice & research. Clinical haematology.

[25]  R. Chen,et al.  Overexpression of the Toll-Like Receptor (TLR) Signaling Adaptor MYD88, but Lack of Genetic Mutation, in Myelodysplastic Syndromes , 2013, PloS one.

[26]  Lesley A. Mathews,et al.  Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. , 2013, Cancer cell.

[27]  S. E. Jacobsen,et al.  Tumor necrosis factor restricts hematopoietic stem cell activity in mice: involvement of two distinct receptors , 2011, The Journal of experimental medicine.

[28]  P. Linsley,et al.  miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice , 2011, The Journal of experimental medicine.

[29]  Ryan M. O’Connell,et al.  NF-κB dysregulation in microRNA-146a–deficient mice drives the development of myeloid malignancies , 2011, Proceedings of the National Academy of Sciences.

[30]  M. Merad,et al.  Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche , 2011, The Journal of experimental medicine.

[31]  Ben D. MacArthur,et al.  Mesenchymal and haematopoietic stem cells form a unique bone marrow niche , 2010, Nature.

[32]  David A. Williams,et al.  The Apc(min) mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. , 2010, Blood.

[33]  M. L. Le Beau,et al.  Haploinsufficiency of Apc leads to ineffective hematopoiesis. , 2010, Blood.

[34]  A. Karsan,et al.  Innate immune signaling in the myelodysplastic syndromes. , 2010, Hematology/oncology clinics of North America.

[35]  Karl J. Dykema,et al.  5q– myelodysplastic syndromes: chromosome 5q genes direct a tumor-suppression network sensing actin dynamics , 2009, Oncogene.

[36]  P. Nguyen,et al.  Myelodysplastic syndromes , 2009, Nature Reviews Disease Primers.

[37]  M. L. Le Beau,et al.  A critical role for Apc in hematopoietic stem and progenitor cell survival , 2008, The Journal of experimental medicine.

[38]  T. Golub,et al.  Identification of RPS14 as a 5q- syndrome gene by RNA interference screen , 2007, Nature.

[39]  John Anastasi,et al.  Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. , 2007, Blood.

[40]  E. Andreakos,et al.  Toll-like Receptor-4 Is Up-Regulated in Hematopoietic Progenitor Cells and Contributes to Increased Apoptosis in Myelodysplastic Syndromes , 2007, Clinical Cancer Research.

[41]  P. Pandolfi,et al.  Role of nucleophosmin in embryonic development and tumorigenesis , 2005, Nature.

[42]  Ryan D. Morin,et al.  Identification of miR-145 and miR-146a as mediators of the 5q– syndrome phenotype , 2010, Nature Medicine.

[43]  S. Nimer Myelodysplastic syndromes. , 2008, Blood.

[44]  C. Rosenfeld,et al.  A hypothesis for the pathogenesis of myelodysplastic syndromes: implications for new therapies , 2000, Leukemia.