Improved characterization of Clematis based on new chloroplast microsatellite markers and nuclear ITS sequences

[1]  N. Singh,et al.  Development of cpSSR markers for analysis of genetic diversity in Gladiolus cultivars , 2017 .

[2]  Lei Xie,et al.  Taxonomic status of Clematis acerifolia var. elobata , based on molecular evidence , 2016 .

[3]  Yang Zhong,et al.  Resolution of Brassicaceae Phylogeny Using Nuclear Genes Uncovers Nested Radiations and Supports Convergent Morphological Evolution , 2015, Molecular biology and evolution.

[4]  Liping Liu,et al.  Development and Validation of EST-SSR Markers from the Transcriptome of Adzuki Bean (Vigna angularis) , 2015, PloS one.

[5]  Yurii B. Shvetsov,et al.  Common Genetic Variation In Cellular Transport Genes and Epithelial Ovarian Cancer (EOC) Risk , 2015, PloS one.

[6]  Gregory L. Wheeler,et al.  A review of the prevalence, utility, and caveats of using chloroplast simple sequence repeats for studies of plant biology , 2014, Applications in plant sciences.

[7]  A. Ceylan,et al.  Genetic diversity among the Turkish common bean cultivars (Phaseolus vulgaris L.) as assessed by SRAP, POGP and cpSSR markers , 2014 .

[8]  Hua Wu,et al.  Development of 12 chloroplast microsatellite markers in Vigna unguiculata (Fabaceae) and amplification in Phaseolus vulgaris , 2014, Applications in plant sciences.

[9]  P. Xiao,et al.  Chemical and biological research of Clematis medicinal resources , 2013 .

[10]  Ling Li,et al.  Cytotoxic triterpene saponins from Clematis mandshurica , 2011, Journal of Asian natural products research.

[11]  J. Wen,et al.  Phylogenetic Analyses of Clematis (Ranunculaceae) Based on Sequences of Nuclear Ribosomal ITS and Three Plastid Regions , 2011 .

[12]  T. Yuan,et al.  Confirmation of Clematis hybrids using molecular markers. , 2010 .

[13]  H. Carrer,et al.  In silico analysis of Simple Sequence Repeats from chloroplast genomes of Solanaceae species. , 2009 .

[14]  P. Taberlet,et al.  DNA barcoding for ecologists. , 2009, Trends in ecology & evolution.

[15]  T. Yukawa,et al.  Phylogenetic relationships of Clematis (Ranunculaceae) based on chloroplast and nuclear DNA sequences , 2006 .

[16]  Robert J Toonen,et al.  Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. , 2006, Ecology letters.

[17]  S. Hokanson,et al.  Intersimple Sequence Repeat Fingerprinting and Genetic Variation in a Collection of Clematis Cultivars and Commercial Germplasm , 2005 .

[18]  Liyuan Zhang,et al.  A new system of classification of the genus Clematis (Ranunculaceae) , 2005 .

[19]  Kejun Liu,et al.  PowerMarker: an integrated analysis environment for genetic marker analysis , 2005, Bioinform..

[20]  M. Morgante,et al.  Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes , 2002, Nature Genetics.

[21]  G. Bryan,et al.  Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants , 1999, Theoretical and Applied Genetics.

[22]  D. Goldstein,et al.  A low mutation rate for chloroplast microsatellites. , 1999, Genetics.

[23]  J. Johansson A revised chloroplast DNA phylogeny of the Ranunculaceae , 1995 .

[24]  T. Bruns,et al.  ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts , 1993, Molecular ecology.

[25]  R. Jansen,et al.  Chloroplast DNA variation and phylogeny of theRanunculaceae , 1993, Plant Systematics and Evolution.

[26]  M. Litt,et al.  A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. , 1989, American journal of human genetics.

[27]  J. B. Walsh,et al.  Effects of linkage on rates of molecular evolution. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Yoshio Tateno,et al.  Accuracy of estimated phylogenetic trees from molecular data , 1983, Journal of Molecular Evolution.

[29]  C. S. Keener,et al.  The subgeneric classification of clematis ranunculaceae in temperate north america north of mexico , 1982 .

[30]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[31]  H. Tobe Morphological studies on the genusClematis Linn , 1980, The botanical magazine = Shokubutsu-gaku-zasshi.

[32]  E. Godley Imbricate sepals in Clematis , 1977 .

[33]  Zhaohu Li,et al.  Cytoplasmic diversity of the cotton genus as revealed by chloroplast microsatellite markers , 2013, Genetic Resources and Crop Evolution.

[34]  Z. Long rDNA-ITS SEQUENCE ANALYSIS OF THE TRADITIONAL MONGOLIAN MEDICINAL PLANTS IN CLEMATIS L. , 2012 .

[35]  Li Rong-rong ITS sequence analysis of eight medicinal plants in Clematis L. , 2011 .

[36]  Passoupathy Rajendrakumar,et al.  Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions , 2007, Bioinform..

[37]  Yoshio Tateno,et al.  Accuracy of estimated phylogenetic trees from molecular data , 2005, Journal of Molecular Evolution.

[38]  Jonathan F. Wendel,et al.  Phylogenetic Incongruence: Window into Genome History and Molecular Evolution , 1998 .

[39]  C. Song Effect of temperature and photoperiod on growth and flowering of potted dwarf clematis , 1997 .

[40]  F. B. Essig SEEDLING MORPHOLOGY IN CLEMATIS (RANUNCULACEAE) AND ITS TAXONOMIC IMPLICATIONS , 1991 .