Temporal Data Mining in Dynamic Feature Spaces

Many interesting real-world applications for temporal data mining are hindered by concept drift. One particular form of concept drift is characterized by changes to the underlying feature space. Seemingly little has been done in this area. This paper presents FAE, an incremental ensemble approach to mining data subject to such concept drift. Empirical results on large data streams demonstrate promise.

[1]  Wei Fan StreamMiner: A Classifier Ensemble-based Engine to Mine Concept-drifting Data Streams , 2004, VLDB.

[2]  Kenneth O. Stanley Learning Concept Drift with a Committee of Decision Trees , 2003 .

[3]  Philip S. Yu,et al.  Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.

[4]  Grigorios Tsoumakas,et al.  On the Utility of Incremental Feature Selection for the Classification of Textual Data Streams , 2005, Panhellenic Conference on Informatics.

[5]  Ruoming Jin,et al.  Efficient decision tree construction on streaming data , 2003, KDD '03.

[6]  Wei Fan,et al.  Systematic data selection to mine concept-drifting data streams , 2004, KDD.

[7]  Ralf Klinkenberg,et al.  Learning drifting concepts: Example selection vs. example weighting , 2004, Intell. Data Anal..

[8]  Gerhard Widmer,et al.  Learning in the Presence of Concept Drift and Hidden Contexts , 1996, Machine Learning.

[9]  Mohammed J. Zaki,et al.  Mining features for sequence classification , 1999, KDD '99.

[10]  C. Giraud-Carrier,et al.  A Constructive Incremental Learning Algorithm for Binary Classification Tasks , 2006, 2006 IEEE Mountain Workshop on Adaptive and Learning Systems.

[11]  Brent Martin,et al.  INSTANCE-B ASED LEARNING: Nearest Neighbour with Generalisation , 1995 .

[12]  Tony R. Martinez,et al.  Priority ASOCS , 1994 .

[13]  Paul E. Utgoff,et al.  Incremental Induction of Decision Trees , 1989, Machine Learning.

[14]  J. C. Schlimmer,et al.  Incremental learning from noisy data , 2004, Machine Learning.

[15]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[16]  Alexey Tsymbal,et al.  The problem of concept drift: definitions and related work , 2004 .

[17]  Geoffrey I. Webb,et al.  Not So Naive Bayes: Aggregating One-Dependence Estimators , 2005, Machine Learning.

[18]  Yan Zhou,et al.  Adaptive spam filtering using dynamic feature space , 2005, 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05).

[19]  Carla E. Brodley,et al.  KDD-Cup 2000 organizers' report: peeling the onion , 2000, SKDD.

[20]  Marcus A. Maloof,et al.  Dynamic weighted majority: a new ensemble method for tracking concept drift , 2003, Third IEEE International Conference on Data Mining.

[21]  Geoff Hulten,et al.  Mining time-changing data streams , 2001, KDD '01.

[22]  Thomas Reinartz,et al.  CRISP-DM 1.0: Step-by-step data mining guide , 2000 .

[23]  João Gama,et al.  Learning decision trees from dynamic data streams , 2005, SAC '05.

[24]  Tom Fawcett,et al.  "In vivo" spam filtering: a challenge problem for KDD , 2003, SKDD.

[25]  Christophe G. Giraud-Carrier,et al.  A Note on the Utility of Incremental Learning , 2000, AI Commun..

[26]  Jesús S. Aguilar-Ruiz,et al.  Incremental rule learning based on example nearness from numerical data streams , 2005, SAC '05.