Functional Magnetic Resonance Imaging Connectivity Analyses Reveal Efference-Copy to Primary Somatosensory Area, BA2

Some theories of motor control suggest efference-copies of motor commands reach somatosensory cortices. Here we used functional magnetic resonance imaging to test these models. We varied the amount of efference-copy signal by making participants squeeze a soft material either actively or passively. We found electromyographical recordings, an efference-copy proxy, to predict activity in primary somatosensory regions, in particular Brodmann Area (BA) 2. Partial correlation analyses confirmed that brain activity in cortical structures associated with motor control (premotor and supplementary motor cortices, the parietal area PF and the cerebellum) predicts brain activity in BA2 without being entirely mediated by activity in early somatosensory (BA3b) cortex. Our study therefore provides valuable empirical evidence for efference-copy models of motor control, and shows that signals in BA2 can indeed reflect an input from motor cortices and suggests that we should interpret activations in BA2 as evidence for somatosensory-motor rather than somatosensory coding alone.

[1]  Robert Turner,et al.  A Method for Removing Imaging Artifact from Continuous EEG Recorded during Functional MRI , 2000, NeuroImage.

[2]  C. Vaughan,et al.  Rectification and non-linear pre-processing of EMG signals for cortico-muscular analysis , 2003, Journal of Neuroscience Methods.

[3]  R. Wise,et al.  Separate Areas for Mirror Responses and Agency within the Parietal Operculum , 2008, The Journal of Neuroscience.

[4]  Natasha M. Maurits,et al.  Surface EMG measurements during fMRI at 3T: Accurate EMG recordings after artifact correction , 2005, NeuroImage.

[5]  S. Kiebel,et al.  Brain Representation of Active and Passive Movements , 1996, NeuroImage.

[6]  Remco Renken,et al.  fMRI analysis for motor paradigms using EMG‐based designs: A validation study , 2007, Human brain mapping.

[7]  K. Amunts,et al.  The human inferior parietal lobule in stereotaxic space , 2008, Brain Structure and Function.

[8]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[9]  E. G. Jones,et al.  Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys , 1978, The Journal of comparative neurology.

[10]  A. Schleicher,et al.  Two different areas within the primary motor cortex of man , 1996, Nature.

[11]  Katrin Amunts,et al.  The human inferior parietal cortex: Cytoarchitectonic parcellation and interindividual variability , 2006, NeuroImage.

[12]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[13]  Mitsuo Kawato,et al.  Internal models for motor control and trajectory planning , 1999, Current Opinion in Neurobiology.

[14]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[15]  C. Keysers,et al.  The Observation and Execution of Actions Share Motor and Somatosensory Voxels in all Tested Subjects: Single-Subject Analyses of Unsmoothed fMRI Data , 2008, Cerebral cortex.

[16]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[17]  D. J. Weber,et al.  Limb-State Information Encoded by Peripheral and Central Somatosensory Neurons: Implications for an Afferent Interface , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[18]  M. Desmurget,et al.  Movement Intention After Parietal Cortex Stimulation in Humans , 2009, Science.

[19]  Inge Zijdewind,et al.  Relation between muscle and brain activity during isometric contractions of the first dorsal interosseus muscle , 2008, Human brain mapping.

[20]  Habib Benali,et al.  Partial correlation for functional brain interactivity investigation in functional MRI , 2006, NeuroImage.

[21]  Remco J. Renken,et al.  The effect of intra- and inter-subject variability of hemodynamic responses on group level Granger causality analyses , 2011, NeuroImage.

[22]  K. Zilles,et al.  Human Somatosensory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindividual Variability, and Population Map , 2001, NeuroImage.

[23]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[24]  Angela R. Laird,et al.  ALE meta-analysis of action observation and imitation in the human brain , 2010, NeuroImage.

[25]  D. I. Perrett,et al.  Visual and somatosensory processing in the macaque temporal cortex: the role of ‘expectation’ , 2004, Experimental Brain Research.

[26]  D. Wolpert,et al.  Motor prediction , 2001, Current Biology.

[27]  Narender Ramnani,et al.  Frontal Lobe and Posterior Parietal Contributions to the Cortico-cerebellar System , 2011, The Cerebellum.

[28]  A. Schleicher,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 1. Microstructural Organization and Interindividual Variability , 1999, NeuroImage.

[29]  Daniel M. Wolpert,et al.  Forward Models for Physiological Motor Control , 1996, Neural Networks.

[30]  Lin Tian,et al.  Activity in motor-sensory projections reveals distributed coding in somatosensation , 2012, Nature.

[31]  Alexandre d'Aspremont,et al.  Convex optimization techniques for fitting sparse Gaussian graphical models , 2006, ICML.

[32]  C. Keysers,et al.  Empathy and the Somatotopic Auditory Mirror System in Humans , 2006, Current Biology.

[33]  G. Luppino,et al.  Cortical connections of the inferior parietal cortical convexity of the macaque monkey. , 2006, Cerebral cortex.

[34]  Dr. Stefan Geyer The Microstructural Border Between the Motor and the Cognitive Domain in the Human Cerebral Cortex , 2004, Advances in Anatomy Embryology and Cell Biology.

[35]  Patrick Haggard,et al.  Supplementary motor area provides an efferent signal for sensory suppression. , 2004, Brain research. Cognitive brain research.

[36]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[37]  Christian Keysers,et al.  Expanding the mirror: vicarious activity for actions, emotions, and sensations , 2009, Current Opinion in Neurobiology.

[38]  K. Zilles,et al.  Areas 3a, 3b, and 1 of Human Primary Somatosensory Cortex 2. Spatial Normalization to Standard Anatomical Space , 2000, NeuroImage.

[39]  J. Kaas,et al.  Corticocortical connections of area 2 of somatosensory cortex in macaque monkeys: A correlative anatomical and electrophysiological study , 1986, The Journal of comparative neurology.

[40]  Christian Keysers,et al.  Somatosensation in social perception , 2010, Nature Reviews Neuroscience.

[41]  Jörn Diedrichsen,et al.  A probabilistic MR atlas of the human cerebellum , 2009, NeuroImage.

[42]  R. Poldrack Can cognitive processes be inferred from neuroimaging data? , 2006, Trends in Cognitive Sciences.

[43]  J. Randall Flanagan,et al.  Coding and use of tactile signals from the fingertips in object manipulation tasks , 2009, Nature Reviews Neuroscience.

[44]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[45]  D. Wolpert,et al.  Central cancellation of self-produced tickle sensation , 1998, Nature Neuroscience.

[46]  J. Nielsen,et al.  Premotor cortex modulates somatosensory cortex during voluntary movements without proprioceptive feedback , 2007, Nature Neuroscience.

[47]  D. Wolpert,et al.  Spatio-Temporal Prediction Modulates the Perception of Self-Produced Stimuli , 1999, Journal of Cognitive Neuroscience.

[48]  C. Keysers,et al.  μ-Suppression during Action Observation and Execution Correlates with BOLD in Dorsal Premotor, Inferior Parietal, and SI Cortices , 2011, The Journal of Neuroscience.

[49]  Lee E Miller,et al.  Responses of somatosensory area 2 neurons to actively and passively generated limb movements. , 2013, Journal of neurophysiology.