Parallel multilevel methods for implicit solution of shallow water equations with nonsmooth topography on the cubed-sphere

High resolution and scalable parallel algorithms for the shallow water equations on the sphere are very important for modeling the global climate. In this paper, we introduce and study some highly scalable multilevel domain decomposition methods for the fully implicit solution of the nonlinear shallow water equations discretized with a second-order well-balanced finite volume method on the cubed-sphere. With the fully implicit approach, the time step size is no longer limited by the stability condition, and with the multilevel preconditioners, good scalabilities are obtained on computers with a large number of processors. The investigation focuses on the use of semismooth inexact Newton method for the case with nonsmooth topography and the use of two- and three-level overlapping Schwarz methods with different order of discretizations for the preconditioning of the Jacobian systems. We test the proposed algorithm for several benchmark cases and show numerically that this approach converges well with smooth and nonsmooth bottom topography, and scales perfectly in terms of the strong scalability and reasonably well in terms of the weak scalability on machines with thousands and tens of thousands of processors.

[1]  P. Paolucci,et al.  The “Cubed Sphere” , 1996 .

[2]  William Gropp,et al.  Parallel Newton-Krylov-Schwarz Algorithms for the Transonic Full Potential Equation , 1996, SIAM J. Sci. Comput..

[3]  P. Swarztrauber,et al.  A standard test set for numerical approximations to the shallow water equations in spherical geometry , 1992 .

[4]  Homer F. Walker,et al.  Choosing the Forcing Terms in an Inexact Newton Method , 1996, SIAM J. Sci. Comput..

[5]  Mark A. Taylor,et al.  A Scalable and Adaptable Solution Framework within Components of the Community Climate System Model , 2009, ICCS.

[6]  Dana A. Knoll,et al.  An Implicit Nonlinearly Consistent Method for the Two-Dimensional Shallow-Water Equations with Coriolis Force , 2002 .

[7]  Jong-Shi Pang,et al.  Globally Convergent Newton Methods for Nonsmooth Equations , 1992, Math. Oper. Res..

[8]  A. Kageyama,et al.  ``Yin-Yang grid'': An overset grid in spherical geometry , 2004, physics/0403123.

[9]  R. Sadourny Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids , 1972 .

[10]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[11]  J. Mandel,et al.  Hybrid Domain Decomposition with Unstructured Subdomains , 2022 .

[12]  Shian-Jiann Lin,et al.  Finite-volume transport on various cubed-sphere grids , 2007, J. Comput. Phys..

[13]  Chao Yang,et al.  A Fully Implicit Domain Decomposition Algorithm for Shallow Water Equations on the Cubed-Sphere , 2010, SIAM J. Sci. Comput..

[14]  David E. Keyes,et al.  Additive Schwarz Methods for Hyperbolic Equations , 1998 .

[15]  Stéphane Lanteri,et al.  Convergence analysis of additive Schwarz for the Euler equations , 2004 .

[16]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[17]  James A. Rossmanith,et al.  A wave propagation method for hyperbolic systems on the sphere , 2006, J. Comput. Phys..

[18]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[19]  Akio Arakawa,et al.  Integration of the Nondivergent Barotropic Vorticity Equation with AN Icosahedral-Hexagonal Grid for the SPHERE1 , 1968 .

[20]  Andrzej A. Wyszogrodzki,et al.  An efficient physics-based preconditioner for the fully implicit solution of small-scale thermally driven atmospheric flows , 2003 .

[21]  Amik St.-Cyr,et al.  A Fully Implicit Jacobian-Free High-Order Discontinuous Galerkin Mesoscale Flow Solver , 2009, ICCS.

[22]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.

[23]  David L. Williamson,et al.  Integration of the barotropic vorticity equation on a spherical geodesic grid , 1968 .

[24]  P. Strevens Iii , 1985 .

[25]  Chao Yang,et al.  A parallel well-balanced finite volume method for shallow water equations with topography on the cubed-sphere , 2011, J. Comput. Appl. Math..

[26]  John M. Dennis,et al.  Towards an efficient and scalable discontinuous Galerkin atmospheric model , 2005, 19th IEEE International Parallel and Distributed Processing Symposium.

[27]  J. J. Moré,et al.  Estimation of sparse jacobian matrices and graph coloring problems , 1983 .

[28]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[29]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[30]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[31]  Chao Yang,et al.  Newton-Krylov-Schwarz Method for a Spherical Shallow Water Model* , 2011 .

[32]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[33]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[34]  Feng Xiao,et al.  Shallow water model on cubed-sphere by multi-moment finite volume method , 2008, J. Comput. Phys..

[35]  William Gropp,et al.  Newton-Krylov-Schwarz Methods in CFD , 1994 .

[36]  M. Taylor,et al.  Accuracy Analysis of a Spectral Element Atmospheric Model Using a Fully Implicit Solution Framework , 2010 .

[37]  William Gropp,et al.  High-performance parallel implicit CFD , 2001, Parallel Comput..

[38]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[39]  J. Hack,et al.  Spectral transform solutions to the shallow water test set , 1995 .

[40]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[41]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[42]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[43]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[44]  Amik St-Cyr,et al.  Nonlinear operator integration factor splitting for the shallow water equations , 2005 .

[45]  Stanley Osher,et al.  Upwind schemes and boundary conditions with applications to Euler equations in general geometries , 1983 .

[46]  Hirofumi Tomita,et al.  A new dynamical framework of nonhydrostatic global model using the icosahedral grid , 2004 .

[47]  Stephen J. Thomas,et al.  Semi-Implicit Spectral Element Atmospheric Model , 2002, J. Sci. Comput..

[48]  F. Mesinger,et al.  A global shallow‐water model using an expanded spherical cube: Gnomonic versus conformal coordinates , 1996 .