Spatially extended OH + emission from the Orion Bar and Ridge. ⋆

Context. The reactive HnO+ ions (OH+, H2O+ and H3O+) are widespread in the interstellar medium and act as precursors to the H2O molecule. While HnO+ absorption is seen on many Galactic lines of sight, active galactic nuclei often show the lines in emission. Aims: This paper shows the first example of a Galactic source of HnO+ line emission: the Orion Bar, a bright nearby photon-dominated region (PDR). Methods: We present line profiles and maps of OH+ line emission toward the Orion Bar, and upper limits to H2O+ and H3O+ lines. We analyze these HIFI data with non-local thermodynamic equilibrium radiative transfer and PDR chemical models, using newly calculated inelastic collision data for the e-OH+ system. Results: Line emission is detected over ~1' (0.12 pc), tracing the Bar itself as well as a perpendicular feature identified as the southern tip of the Orion Ridge, which borders the Orion Nebula on its western side. The line width of ≈ 4 km s-1 suggests an origin of the OH+ emission close to the PDR surface, at a depth of AV ~ 0.3-0.5 into the cloud where most hydrogen is in atomic form. Steady-state collisional and radiative excitation models for OH+ require unrealistically high column densities to match the observed line intensity, indicating that the formation of OH+ in the Bar is rapid enough to influence its excitation. Our best-fit OH+ column density of ~ 1.0 × 1014 cm-2 is similar to that in previous absorption line studies, while our limits on the ratios of OH+/H2O+ (≳ 40) and OH+/H3O+ (≳ 15) are somewhat higher than seen before. Conclusions: The column density of OH+ is consistent with estimates from a thermo-chemical model for parameters applicable to the Orion Bar, given the current uncertainties in the local gas pressure and the spectral shape of the ionizing radiation field. The unusually high OH+/H2O+ and OH+/H3O+ ratios are probably due to the high UV radiation field and electron density in this object. In the Bar, photodissociation and electron recombination are more effective destroyers of OH+ than the reaction with H2, which limits the production of H2O+. The appearance of the OH+ lines in emission is the result of the high density of electrons and H atoms in the Orion Bar, since for these species, inelastic collisions with OH+ are faster than reactive ones. In addition, chemical pumping, far-infrared pumping by local dust, and near-UV pumping by Trapezium starlight contribute to the OH+ excitation. Similar conditions may apply to extragalactic nuclei where HnO+ lines are seen in emission.

[1]  O. Krause,et al.  Detection of a Noble Gas Molecular Ion, 36ArH+, in the Crab Nebula , 2013, Science.

[2]  J. Tennyson,et al.  CN excitation and electron densities in diffuse molecular clouds , 2013, 1308.4010.

[3]  India,et al.  THE 2013 RELEASE OF CLOUDY , 2013, 1302.4485.

[4]  C. Dominik,et al.  Herschel CHESS discovery of the fossil cloud that gave birth to the Trapezium and Orion KL , 2012, 1211.5772.

[5]  R. Davies,et al.  Excited OH+, H2O+, and H3O+ in NGC 4418 and Arp 220 , 2012, 1211.5064.

[6]  P. P. van der Werf,et al.  TEARING THE VEIL: INTERACTION OF THE ORION NEBULA WITH ITS NEUTRAL ENVIRONMENT , 2012, 1211.0470.

[7]  A. Faure,et al.  The impact of collisional rate coefficients on molecular hyperfine selective excitation , 2012 .

[8]  Christine D. Wilson,et al.  SUBMILLIMETER LINE SPECTRUM OF THE SEYFERT GALAXY NGC 1068 FROM THE HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER , 2012, 1208.6132.

[9]  K. Menten,et al.  CHEMICAL ANALYSIS OF A DIFFUSE CLOUD ALONG A LINE OF SIGHT TOWARD W51: MOLECULAR FRACTION AND COSMIC-RAY IONIZATION RATE , 2012, 1208.3202.

[10]  J. Goicoechea,et al.  THE CHEMISTRY OF INTERSTELLAR OH+, H2O+, AND H3O+: INFERRING THE COSMIC-RAY IONIZATION RATES FROM OBSERVATIONS OF MOLECULAR IONS , 2012, 1205.6446.

[11]  G. Nyman,et al.  Ion chemistry in space , 2012, Reports on progress in physics. Physical Society.

[12]  Laboratoire d'Astrophysique de Marseille,et al.  HERSCHEL-SPIRE IMAGING SPECTROSCOPY OF MOLECULAR GAS IN M82 , 2012, 1205.0006.

[13]  P. Encrenaz,et al.  HERSCHEL SEARCH FOR O2 TOWARD THE ORION BAR , 2012, 1204.5706.

[14]  Peter G. Martin,et al.  Evolution of dust in the Orion Bar with Herschel , 2012, 1202.1624.

[15]  E. Bergin,et al.  Detection of HF emission from the Orion Bar , 2011, 1112.3860.

[16]  Michael Olberg,et al.  In-orbit performance of Herschel-HIFI , 2012 .

[17]  B. McCall,et al.  INVESTIGATING THE COSMIC-RAY IONIZATION RATE IN THE GALACTIC DIFFUSE INTERSTELLAR MEDIUM THROUGH OBSERVATIONS OF H+3 , 2011, 1111.6936.

[18]  Christine D. Wilson,et al.  OBSERVATIONS OF Arp 220 USING HERSCHEL-SPIRE: AN UNPRECEDENTED VIEW OF THE MOLECULAR GAS IN AN EXTREME STAR FORMATION ENVIRONMENT , 2011, 1106.5054.

[19]  Integral field spectroscopy of selected areas of the Bright bar and Orion-S cloud in the Orion nebula , 2011, 1106.3602.

[20]  J. L. Bourlot,et al.  OH emission from warm and dense gas in the Orion Bar PDR , 2011, 1105.2623.

[21]  Y. Beletsky,et al.  HYDROXYL CATION IN TRANSLUCENT INTERSTELLAR CLOUDS , 2010 .

[22]  A. Giorgio,et al.  Herschel/HIFI detections of hydrides towards AFGL 2591: Envelope emission versus tenuous cloud absorption , 2010, 1007.3408.

[23]  K. Menten,et al.  Herschel observations of EXtra-Ordinary Sources (HEXOS): the present and future of spectral surveys with Herschel/HIFI. , 2010, 1007.2172.

[24]  C. Kramer,et al.  Herschel / HIFI : first science highlights Special feature L etter to the E ditor HIFI spectroscopy of low-level water transitions in M 82 , 2010 .

[25]  P. Hennebelle,et al.  Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6–0.4 , 2010, 1005.5653.

[26]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[27]  G. Savini,et al.  Black hole accretion and star formation as drivers of gas excitation and chemistry in Markarian 231 , 2010, 1005.2877.

[28]  A. Belloche,et al.  First interstellar detection of OH , 2010, 1004.2627.

[29]  Calgary,et al.  Chemical stratification in the Orion Bar: JCMT Spectral Legacy Survey observations , 2009, 0902.1433.

[30]  J. L. Bourlot,et al.  Radiative transfer revisited for emission lines in photon dominated regions , 2008 .

[31]  G. Nyman,et al.  Rotational Transitions of CO+ Induced by Atomic Hydrogen , 2007 .

[32]  K. Menten,et al.  The distance to the Orion Nebula , 2007, 0709.0485.

[33]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[34]  S. Sakai,et al.  Distance to Orion KL Measured with VERA , 2007, 0705.3792.

[35]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[36]  T. Millar,et al.  The UMIST database for astrochemistry 2012 , 2012, 1212.6362.

[37]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[38]  The penetration of Far-UV radiation into molecular clouds , 2007, astro-ph/0702033.

[39]  R. Meijerink,et al.  Irradiated ISM: Discriminating between Cosmic Rays and X-Rays , 2006, astro-ph/0609184.

[40]  J. L. Bourlot,et al.  A Model for Atomic and Molecular Interstellar Gas: The Meudon PDR Code , 2006, astro-ph/0602150.

[41]  B. Draine,et al.  H2 Pure Rotational Lines in the Orion Bar , 2005, astro-ph/0506003.

[42]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[43]  C. Kramer,et al.  The Herschel-Heterodyne Instrument for the Far-Infrared (HIFI) , 2005, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[44]  P. Martin,et al.  On the O II Ground Configuration Energy Levels , 2004, astro-ph/0404429.

[45]  Bonn,et al.  Hyperfine structure in H 13 CO + and 13 CO: Measurement, analysis, and consequences for the study of dark clouds , 2004, astro-ph/0403059.

[46]  B. Sharpee,et al.  Measurements of the Singly Ionized Oxygen Auroral Doublet Lines λλ7320, 7330 Using High-Resolution Sky Spectra , 2004, astro-ph/0401284.

[47]  P. Bastien,et al.  Tracing the Magnetic Field in Orion A , 2003, astro-ph/0312365.

[48]  P. Schilke,et al.  Dense Molecular Clumps in the Orion Bar Photon-dominated Region , 2003 .

[49]  T. Wilson,et al.  Kinetic temperatures in the Orion Bar , 2003 .

[50]  A. Fuente,et al.  Observational study of reactive ions and radicals in PDRs , 2003 .

[51]  J. Tennyson,et al.  Electron-impact rotational excitation of linear molecular ions , 2001 .

[52]  T. Wilson,et al.  A High-Density Thin Layer Confining the H II Region M42: Heinrich Hertz Telescope Measurements , 2001, astro-ph/0105553.

[53]  D. B. Milligan,et al.  H3++O: an experimental study , 2000 .

[54]  Holger S. P. Müller,et al.  THE COLOGNE DATABASE FOR MOLECULAR SPECTROSCOPY, CDMS , 2001 .

[55]  P. Schilke,et al.  Carbon Radio Recombination Lines in the Orion Bar , 1997 .

[56]  T. Phillips,et al.  Interstellar H3O+ and its relation to the O2 and H2O abundances , 1992 .

[57]  J. Black,et al.  Electron densities and the excitation of CN in molecular clouds , 1991 .

[58]  F. McCourt,et al.  Infinite‐order sudden calculations of pressure broadening cross sections for noble gas–oxygen binary mixtures , 1984 .

[59]  E. Ferguson,et al.  Reaction of O + , CO + , and CH + Ions with Atomic Hydrogen , 1984 .

[60]  H. Werner,et al.  Molecular properties from MCSCF‐SCEP wave functions. I. Accurate dipole moment functions of OH, OH−, and OH+ , 1983 .

[61]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[62]  S. Chu,et al.  Rotational excitation of CH+ by electron impact , 1974 .

[63]  P. Swings,et al.  The Spectrum of Comet Bester (1947k). , 1950 .