Extinction of eastern Sahul megafauna coincides with sustained environmental deterioration

[1]  B. Marwick,et al.  UThwigl — An R package for closed- and open-system uranium–thorium dating , 2022, Quaternary Geochronology.

[2]  S. Archibald,et al.  A unified framework for plant life history strategies shaped by fire and herbivory. , 2019, The New phytologist.

[3]  C. Bradshaw,et al.  FosSahul 2.0, an updated database for the Late Quaternary fossil records of Sahul , 2019, Scientific Data.

[4]  B. David,et al.  45,610–52,160 years of site and landscape occupation at Nawarla Gabarnmang, Arnhem Land plateau (northern Australia) , 2019, Quaternary Science Reviews.

[5]  R. Edwards,et al.  Spatio-temporal evolution of Australasian monsoon hydroclimate over the last 40,000 years , 2019, Earth and Planetary Science Letters.

[6]  J. Arsuaga,et al.  Single-grain OSL dating of the Middle Palaeolithic site of Galería de las Estatuas, Atapuerca (Burgos, Spain) , 2019, Quaternary Geochronology.

[7]  L. Arnold,et al.  Australian hydroclimate during Marine Isotope Stage 3: A synthesis and review , 2019, Quaternary Science Reviews.

[8]  B. Marwick,et al.  iDADwigl - an R package for open-system uranium-thorium dating , 2019 .

[9]  J. Baldock,et al.  Development of a southern hemisphere subtropical wetland (Welsby Lagoon, south-east Queensland, Australia) through the last glacial cycle , 2018, Quaternary Science Reviews.

[10]  K. Fryirs,et al.  Palaeohydrology of lowland rivers in the Murray-Darling Basin, Australia , 2018, Quaternary Science Reviews.

[11]  J. O'connell,et al.  When did Homo sapiens first reach Southeast Asia and Sahul? , 2018, Proceedings of the National Academy of Sciences.

[12]  Eline N. van Asperen,et al.  Dung fungi as a proxy for megaherbivores: opportunities and limitations for archaeological applications , 2018, Vegetation History and Archaeobotany.

[13]  Michael C. Westaway,et al.  Big data little help in megafauna mysteries , 2018, Nature.

[14]  J. Dodson,et al.  What does the occurrence of Sporormiella (Preussia) spores mean in Australian fossil sequences? , 2018 .

[15]  T. Bodin,et al.  MCDoseE 2.0 A new Markov Chain Monte Carlo program for ESR dose response curve fitting and dose evaluation , 2018 .

[16]  Lynley A. Wallis,et al.  A multi-proxy study of anthropogenic sedimentation and human occupation of Gledswood Shelter 1: exploring an interior sandstone rockshelter in Northern Australia , 2018, Archaeological and Anthropological Sciences.

[17]  S. Lewis,et al.  Sea-level change and demography during the last glacial termination and early Holocene across the Australian continent , 2018 .

[18]  L. Arnold,et al.  First evidence of an extensive Acheulean large cutting tool accumulation in Europe from Porto Maior (Galicia, Spain) , 2018, Scientific Reports.

[19]  P. Moss,et al.  A 60 000‐year record of environmental change for the Wet Tropics of north‐eastern Australia based on the ODP 820 marine core , 2017 .

[20]  Lynley A. Wallis,et al.  Human occupation of northern Australia by 65,000 years ago , 2017, Nature.

[21]  R. J. Mitchell,et al.  Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia , 2017, Nature.

[22]  Michael C. Westaway,et al.  At least 17,000 years of coexistence: Modern humans and megafauna at the Willandra Lakes, South-Eastern Australia , 2017 .

[23]  G. Miller,et al.  Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia , 2017, Nature Communications.

[24]  N. Spooner,et al.  Cultural innovation and megafauna interaction in the early settlement of arid Australia , 2016, Nature.

[25]  Sean Ulm,et al.  Humans, water, and the colonization of Australia , 2016, Proceedings of the National Academy of Sciences.

[26]  Nigel A. Spooner,et al.  OSL dating of individual quartz ‘supergrains’ from the Ancient Middle Palaeolithic site of Cuesta de la Bajada, Spain , 2016 .

[27]  P. Andrews,et al.  Atlas of Taphonomic Identifications: 1001+ Images of Fossil and Recent Mammal Bone Modification , 2016 .

[28]  Zenobia Jacobs,et al.  A late Quaternary vertebrate deposit in Kudjal Yolgah Cave, south‐western Australia: refining regional late Pleistocene extinctions , 2016 .

[29]  C. Marshall,et al.  Estimating times of extinction in the fossil record , 2016, Biology Letters.

[30]  Damien A. Fordham,et al.  Where to Dig for Fossils: Combining Climate-Envelope, Taphonomy and Discovery Models , 2016, PloS one.

[31]  Christopher N. Johnson,et al.  What caused extinction of the Pleistocene megafauna of Sahul? , 2016, Proceedings of the Royal Society B: Biological Sciences.

[32]  N. Spooner,et al.  Is the "Genyornis" egg of a mihirung or another extinct bird from the Australian dreamtime? , 2016 .

[33]  Damien A. Fordham,et al.  Climate change not to blame for late Quaternary megafauna extinctions in Australia , 2016, Nature Communications.

[34]  G. Miller,et al.  Human predation contributed to the extinction of the Australian megafaunal bird Genyornis newtoni ∼47 ka , 2016, Nature Communications.

[35]  J. Terborgh,et al.  Megafauna and ecosystem function from the Pleistocene to the Anthropocene , 2016, Proceedings of the National Academy of Sciences.

[36]  R. Sala,et al.  Extended-range luminescence chronologies suggest potentially complex bone accumulation histories at the Early-to-Middle Pleistocene palaeontological site of Huéscar-1 (Guadix-Baza basin, Spain) , 2015 .

[37]  Christopher N. Johnson,et al.  Criteria for assessing the quality of Middle Pleistocene to Holocene vertebrate fossil ages , 2015 .

[38]  R. Joannes-Boyau,et al.  Temporal overlap of humans and giant lizards (Varanidae; Squamata) in Pleistocene Australia , 2015 .

[39]  B. Jones,et al.  Hydrological transformation coincided with megafaunal extinction in central Australia , 2015 .

[40]  J. O'connell,et al.  Both half right:Updating the evidence for dating first human arrivals in Sahul , 2014 .

[41]  C. Janis,et al.  Locomotion in Extinct Giant Kangaroos: Were Sthenurines Hop-Less Monsters? , 2014, PloS one.

[42]  G. Price,et al.  Direct U–Th dating of vertebrate fossils with minimum sampling destruction and application to museum specimens , 2013 .

[43]  P. Moss,et al.  Late Quaternary vegetation history of North Stradbroke Island, Queensland, eastern Australia , 2013 .

[44]  Christopher N. Johnson,et al.  Lack of chronological support for stepwise prehuman extinctions of Australian megafauna , 2013, Proceedings of the National Academy of Sciences.

[45]  P. Ridd,et al.  Humans, megafauna and environmental change in tropical Australia , 2013 .

[46]  N. Owen‐Smith Contrasts in the large herbivore faunas of the southern continents in the late Pleistocene and the ecological implications for human origins , 2013 .

[47]  D. Grayson,et al.  Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea) , 2013, Proceedings of the National Academy of Sciences.

[48]  K. Willis,et al.  Do dung fungal spores make a good proxy for past distribution of large herbivores , 2013 .

[49]  S. Wroe,et al.  Looking for the archaeological signature in Australian Megafaunal extinctions , 2013 .

[50]  M. Sambridge,et al.  U-series dating of bone in an open system: The diffusion-adsorption-decay model , 2012 .

[51]  J. Wilmshurst,et al.  Wetland soil moisture complicates the use of Sporormiella to trace past herbivore populations , 2012 .

[52]  Christopher N. Johnson,et al.  The Aftermath of Megafaunal Extinction: Ecosystem Transformation in Pleistocene Australia , 2012, Science.

[53]  A. Cooper,et al.  Man and megafauna in Tasmania: closing the gap , 2012 .

[54]  G. Price Plio-Pleistocene Climate and Faunal Change in Central Eastern Australia , 2012 .

[55]  Richard J. Williams,et al.  Flammable Australia: fire regimes, biodiversity and ecosystems in a changing world. , 2012 .

[56]  R. Graham,et al.  The Sporormiella proxy and end-Pleistocene megafaunal extinction: A perspective , 2011 .

[57]  Jian-xin Zhao,et al.  Speleothem‐derived Asian summer monsoon variations in Central China, 54–46 ka , 2011 .

[58]  T. Pietsch,et al.  A 100 ka record of fluvial activity in the Fitzroy River Basin, tropical northeastern Australia , 2011 .

[59]  Z. Jacobs,et al.  Timing and dynamics of Late Pleistocene mammal extinctions in southwestern Australia , 2010, Proceedings of the National Academy of Sciences.

[60]  A. Pike,et al.  ESR and U-series analyses of faunal material from Cuddie Springs, NSW, Australia: implications for the timing of the extinction of the Australian megafauna , 2010 .

[61]  B. Brook,et al.  Turning back the clock on the extinction of megafauna in Australia , 2010 .

[62]  G. Price,et al.  Gigantism of the Australian Diprotodon Owen 1838 (Marsupialia, Diprotodontoidea) through the Pleistocene , 2009 .

[63]  T. Pietsch Optically stimulated luminescence dating of young (<500 years old) sediments: Testing estimates of burial dose , 2009 .

[64]  M. Morwood,et al.  Dragon's Paradise Lost: Palaeobiogeography, Evolution and Extinction of the Largest-Ever Terrestrial Lizards (Varanidae) , 2009, PLoS ONE.

[65]  R. Galbraith,et al.  A revised burial dose estimation procedure for optical dating of young and modern-age sediments , 2009 .

[66]  B. Jones,et al.  Alluvial evidence for major climate and flow regime changes during the middle and late Quaternary in eastern central Australia , 2008 .

[67]  S. Wroe,et al.  Chronological overlap between humans and megafauna in Sahul (Pleistocene Australia–New Guinea): A review of the evidence , 2008 .

[68]  G. Price Taxonomy and palaeobiology of the largest-ever marsupial, Diprotodon Owen, 1838 (Diprotodontidae, Marsupialia) , 2008 .

[69]  G. Webb,et al.  Responses of Quaternary rainforest vertebrates to climate change in Australia , 2007 .

[70]  Peter Kershaw,et al.  A complete pollen record of the last 230 ka from Lynch's Crater, north-eastern Australia , 2007 .

[71]  P. Moss,et al.  A Quaternary marine palynological record (oxygen isotope stages 1 to 13) for the humid tropics of northeastern Australia based on ODP site 820 , 2007 .

[72]  B. David,et al.  Sediment mixing at Nonda Rock: investigations of stratigraphic integrity at an early archaeological site in northern Australia and implications for the human colonisation of the continent , 2007 .

[73]  J. Hellstrom,et al.  An arid-adapted middle Pleistocene vertebrate fauna from south-central Australia , 2007, Nature.

[74]  G. Price,et al.  Late Pleistocene sedimentology, taphonomy and megafauna extinction on the Darling Downs, southeastern Queensland , 2006 .

[75]  S. Wroe,et al.  A review of the evidence for a human role in the extinction of Australian megafauna and an alternative interpretation , 2006 .

[76]  Kristofer M. Helgen,et al.  Ecological and evolutionary significance of sizes of giant extinct kangaroos , 2006 .

[77]  B. Brook,et al.  Is there a Pleistocene archaeological site at Cuddie Springs , 2006 .

[78]  Hiroshi Kawamura,et al.  Climate variability and land-ocean interactions in the Indo Pacific Warm Pool: A 460-ka palynological and organic geochemical record from the Timor Sea , 2006 .

[79]  Christopher N. Johnson,et al.  Selective hunting of juveniles as a cause of the imperceptible overkill of the Australian Pleistocene megafauna , 2006 .

[80]  J. Grindrod,et al.  Pollen transport and deposition in riverine and marine environments within the humid tropics of northeastern Australia , 2005 .

[81]  W. Bond,et al.  SHAPING THE LANDSCAPE: FIRE–GRAZER INTERACTIONS IN AN AFRICAN SAVANNA , 2005 .

[82]  E. Bard,et al.  A biomass burning record from the West Equatorial Pacific over the last 360 ky: methodological, climatic and anthropic implications , 2004 .

[83]  J. O'connell,et al.  Dating the colonization of Sahul (Pleistocene Australia-New Guinea): a review of recent research , 2004 .

[84]  B. J. Brennan Beta doses to spherical grains , 2003 .

[85]  J. Webster,et al.  Coral variation in two deep drill cores: significance for the Pleistocene development of the Great Barrier Reef , 2003 .

[86]  G. Prideaux Systematics and Evolution of the Sthenurine Kangaroos , 2003 .

[87]  J. Long,et al.  Prehistoric Mammals of Australia and New Guinea: One Hundred Million Years of Evolution , 2003 .

[88]  D. Bowman,et al.  Explaining the Pleistocene megafaunal extinctions: Models, chronologies, and assumptions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[89]  G. Laslett,et al.  New Ages for the Last Australian Megafauna: Continent-Wide Extinction About 46,000 Years Ago , 2001, Science.

[90]  Sean Ulm,et al.  INDEX OF DATES FROM ARCHAEOLOGICAL SITES IN QUEENSLAND , 2000 .

[91]  A. Murray,et al.  Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol , 2000 .

[92]  G. Laslett,et al.  OPTICAL DATING OF SINGLE AND MULTIPLE GRAINS OF QUARTZ FROM JINMIUM ROCK SHELTER, NORTHERN AUSTRALIA: PART I, EXPERIMENTAL DESIGN AND STATISTICAL MODELS* , 1999 .

[93]  H. Heijnis,et al.  Aridity in Australia: Pleistocene records of Palaeohydrological and Palaeoecological change from the perched lake sediments of Fraser Island, Queensland, Australia , 1999 .

[94]  M. Aitken,et al.  An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence , 1998 .

[95]  J. Prescott,et al.  Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations , 1994 .

[96]  G. Nanson,et al.  Quaternary stratigraphy, geochronology and evolution of the Magela Creek catchment in the monsoon tropics of northern Australia , 1993 .

[97]  W. A. V. D. Kaars Palynology of eastern Indonesian marine piston-cores : a Late Quaternary vegetational and climatic record for Australasia , 1991 .

[98]  T. Spencer,et al.  Stratigraphy and Chronology of Late Pleistocene Reefs in the Southern Cook Islands, South Pacific , 1991, Quaternary Research.

[99]  J. Cloudsley-Thompson Quaternary Extinctions. A prehistoric revolution , 1990 .

[100]  R. Lyman,et al.  A critical evaluation of bone weathering as an indication of bone assemblage formation , 1989 .

[101]  V. Mejdahl THERMOLUMINESCENCE DATING: BETA‐DOSE ATTENUATION IN QUARTZ GRAINS , 1979 .

[102]  R. Snow,et al.  Review of the Evidence. , 1964, Science.

[103]  T. Higham,et al.  Challenges in sample processing within radiocarbon dating and their impact in 14C-dates-as-data studies , 2020 .

[104]  T. Evans A critical evaluation of our understanding of bone transport and deposition in fluvial channels , 2015 .

[105]  P. Moss 14.26 Palynology and Its Application to Geomorphology , 2013 .

[106]  S. Haberle,et al.  Peopled Landscapes (Terra Australis 34) : Archaeological and Biogeographic Approaches to Landscapes , 2012 .

[107]  L. Arnold,et al.  Portable gamma spectrometry with cerium-doped lanthanum bromide scintillators: Suitability assessments for luminescence and electron spin resonance dating applications , 2012 .

[108]  Norbert Mercier,et al.  Dose-rate conversion factors: update , 2011 .

[109]  J. Hellstrom,et al.  Mammalian responses to Pleistocene climate change in southeastern Australia , 2007 .

[110]  M. Berelowitz,et al.  A Review of Recent Research , 2006 .

[111]  P. Smaglik Closing the gap , 2005, Nature.

[112]  J. Allenb,et al.  Dating the colonization of Sahul ( Pleistocene Australia – New Guinea ) : a review of recent research , 2004 .

[113]  D. Greenaway,et al.  Synthesis and review , 1999 .

[114]  R. Molnar,et al.  The distribution of Pleistocene vertebrates on the eastern Darling Downs, based on the Queensland Museum collections , 1997 .

[115]  Paul F. Green,et al.  Estimating the component ages in a finite mixture , 1990 .

[116]  Jere H. Lipps,et al.  Sampling bias, gradual extinction patterns and catastrophes in the fossil record , 1982 .

[117]  E. P. Lewis In perspective. , 1972, Nursing outlook.