Crystal Structure of a Flp Recombinase–Holliday Junction Complex

[1]  J. Champoux,et al.  Novel insights into catalytic mechanism from a crystal structure of human topoisomerase I in complex with DNA. , 2000, Biochemistry.

[2]  S. Shuman,et al.  Catalytic mechanism of DNA topoisomerase IB. , 2000, Molecular cell.

[3]  S. Rhee,et al.  Structural homology between MarA of the AraC family of transcriptional activators and the integrase family of site-specific recombinases. , 2000, Molecular microbiology.

[4]  Andras Nagy,et al.  Cre recombinase: The universal reagent for genome tailoring , 2000, Genesis.

[5]  D. Sherratt,et al.  Reciprocal control of catalysis by the tyrosine recombinases XerC and XerD: an enzymatic switch in site-specific recombination. , 1999, Molecular cell.

[6]  J. Pouliot,et al.  Yeast gene for a Tyr-DNA phosphodiesterase that repairs topoisomerase I complexes. , 1999, Science.

[7]  K D Cowtan,et al.  Density modification for macromolecular phase improvement. , 1999, Progress in biophysics and molecular biology.

[8]  M. Jayaram,et al.  The integrase family of recombinases: organization and function of the active site , 1999, Molecular microbiology.

[9]  F. Guo,et al.  Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[10]  B. Peter,et al.  The topological mechanism of phage lambda integrase. , 1999, Journal of molecular biology.

[11]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[12]  S. Levene,et al.  DNA-sequence asymmetry directs the alignment of recombination sites in the FLP synaptic complex. , 1999, Journal of molecular biology.

[13]  D N Gopaul,et al.  Structure and mechanism in site-specific recombination. , 1999, Current opinion in structural biology.

[14]  M. Jayaram,et al.  A general model for site-specific recombination by the integrase family recombinases. , 1999, Nucleic acids research.

[15]  Jehee Lee,et al.  Wild‐type Flp recombinase cleaves DNA in trans , 1999, The EMBO journal.

[16]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[17]  J. Wang,et al.  Identification of Active Site Residues in the “GyrA” Half of Yeast DNA Topoisomerase II* , 1998, The Journal of Biological Chemistry.

[18]  F. Guo,et al.  Structure of the Holliday junction intermediate in Cre–loxP site‐specific recombination , 1998, The EMBO journal.

[19]  P. Angrand,et al.  Improved properties of FLP recombinase evolved by cycling mutagenesis , 1998, Nature Biotechnology.

[20]  D. Wigley,et al.  Teaching a new dog old tricks? , 1998, Structure.

[21]  M. Jayaram,et al.  Unveiling two distinct ribonuclease activities and a topoisomerase activity in a site-specific DNA recombinase. , 1998, Molecular cell.

[22]  Chonghui Cheng,et al.  Conservation of Structure and Mechanism between Eukaryotic Topoisomerase I and Site-Specific Recombinases , 1998, Cell.

[23]  J. Champoux,et al.  Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. , 1998, Science.

[24]  H. Fukuhara,et al.  A Circular Plasmid from the YeastTorulaspora delbrueckii , 1997 .

[25]  F. Guo,et al.  Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse , 1997, Nature.

[26]  D. Esposito,et al.  The integrase family of tyrosine recombinases: evolution of a conserved active site domain. , 1997, Nucleic acids research.

[27]  L. Bird,et al.  Crystal structure of the site‐specific recombinase, XerD , 1997, The EMBO journal.

[28]  Anthony Maxwell,et al.  Crystal structure of the breakage–reunion domain of DNA gyrase , 1997, Nature.

[29]  F. Dyda,et al.  Molecular Organization in Site-Specific Recombination: The Catalytic Domain of Bacteriophage HP1 Integrase at 2.7 Å Resolution , 1997, Cell.

[30]  M. Jayaram The Cis-Trans Paradox of Integrase , 1997, Science.

[31]  T. Ellenberger,et al.  Flexibility in DNA Recombination: Structure of the Lambda Integrase Catalytic Core , 1997, Science.

[32]  M Eisenstein,et al.  X-ray and solution studies of DNA oligomers and implications for the structural basis of A-tract-dependent curvature. , 1997, Journal of molecular biology.

[33]  M. Jayaram,et al.  The yeast site-specific recombinase Flp mediates alcoholysis and hydrolysis of the strand cleavage product: mimicking the strand-joining reaction with non-DNA nucleophiles. , 1997, Journal of molecular biology.

[34]  D. Sherratt,et al.  Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD. , 1997, Journal of molecular biology.

[35]  A. Burgin,et al.  A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  N. Seeman,et al.  Resolution of Holliday junctions by eukaryotic DNA topoisomerase I. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Cox,et al.  A Protein Dissociation Step Limits Turnover in FLP Recombinase-mediated Site-specific Recombination (*) , 1995, The Journal of Biological Chemistry.

[38]  M. Cox,et al.  Asymmetry in active complexes of FLP recombinase. , 1995, Genes & development.

[39]  D. Sherratt,et al.  Xer site‐specific recombination in vitro. , 1995, The EMBO journal.

[40]  M. Jayaram,et al.  Role of Partner Homology in DNA Recombination , 1995, The Journal of Biological Chemistry.

[41]  R. Weisberg,et al.  Lambda integrase cleaves DNA in cis. , 1994, The EMBO journal.

[42]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[43]  M. Jayaram,et al.  Generality of the shared active site among yeast family site-specific recombinases. The ARg site-specific recombinase follows the Flp paradigm , 1994 .

[44]  P. Sadowski,et al.  Interaction of the NH2- and COOH-terminal domains of the FLP recombinase with the FLP recognition target sequence. , 1994, The Journal of biological chemistry.

[45]  P. Sadowski,et al.  Identification of the functional domains of the FLP recombinase. Separation of the nonspecific and specific DNA-binding, cleavage, and ligation domains. , 1993, The Journal of biological chemistry.

[46]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[47]  M. Jayaram,et al.  Mechanism of site-specific recombination. Logic of assembling recombinase catalytic site from fractional active sites. , 1993, The Journal of biological chemistry.

[48]  P. Sadowski,et al.  Mechanism of cleavage and ligation by FLP recombinase: classification of mutations in FLP protein by in vitro complementation analysis , 1993, Molecular and cellular biology.

[49]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[50]  J. Dixon,et al.  Mutations of the FLP recombinase gene that cause a deficiency in DNA bending and strand cleavage. , 1993, The Journal of biological chemistry.

[51]  I. Whang,et al.  Functional analysis of Box II mutations in yeast site-specific recombinases Flp and R. Significance of amino acid conservation within the Int family and the yeast sub-family. , 1992, Journal of molecular biology.

[52]  J. W. Chen,et al.  Functional analysis of box I mutations in yeast site-specific recombinases Flp and R: pairwise complementation with recombinase variants lacking the active-site tyrosine , 1992, Molecular and cellular biology.

[53]  P. Sadowski,et al.  Ligation activity of FLP recombinase. The strand ligation activity of a site-specific recombinase using an activated DNA substrate. , 1992, The Journal of biological chemistry.

[54]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[55]  H. Pan,et al.  Identification of the DNA-binding domain of the FLP recombinase. , 1991, The Journal of biological chemistry.

[56]  J. W. Chen,et al.  Tyr60 variants of Flp recombinase generate conformationally altered protein-DNA complexes. Differential activity in full-site and half-site recombinations. , 1991, Journal of molecular biology.

[57]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[58]  P. Sadowski,et al.  FLP protein of 2 mu circle plasmid of yeast induces multiple bends in the FLP recognition target site. , 1990, Journal of molecular biology.

[59]  R. Lavery,et al.  Defining the structure of irregular nucleic acids: conventions and principles. , 1989, Journal of biomolecular structure & dynamics.

[60]  M. Cox,et al.  DNA recognition by the FLP recombinase of the yeast 2 mu plasmid. A mutational analysis of the FLP binding site. , 1988, Journal of molecular biology.

[61]  L. Matsumoto,et al.  Site-specific recombination intermediates trapped with suicide substrates , 1987, Cell.

[62]  J. Attwood,et al.  Purification of the FLP site-specific recombinase by affinity chromatography and re-examination of basic properties of the system. , 1987, Nucleic acids research.

[63]  M. Cox,et al.  Specific contacts between the FLP protein of the yeast 2-micron plasmid and its recombination site. , 1986, The Journal of biological chemistry.

[64]  M. Cox,et al.  Directionality in FLP protein-promoted site-specific recombination is mediated by DNA-DNA pairing. , 1986, The Journal of biological chemistry.

[65]  P Argos,et al.  The integrase family of site‐specific recombinases: regional similarities and global diversity. , 1986, The EMBO journal.

[66]  R. Hoess,et al.  Bacteriophage P1 Cre-loxP site-specific recombination. Site-specific DNA topoisomerase activity of the Cre recombination protein. , 1986, The Journal of biological chemistry.

[67]  M. Cox,et al.  The FLP recombinase of the yeast 2-micron plasmid: characterization of its recombination site. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[68]  R. Gronostajski,et al.  Determination of DNA sequences essential for FLP-mediated recombination by a novel method. , 1985, The Journal of biological chemistry.

[69]  M. Jayaram Two-micrometer circle site-specific recombination: the minimal substrate and the possible role of flanking sequences. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[70]  R. Hoess,et al.  P1 site-specific recombination: nucleotide sequence of the recombining sites. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[71]  N. Sternberg,et al.  Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. , 1981, Journal of molecular biology.

[72]  R. Tirumalai,et al.  Similarities and differences among 105 members of the Int family of site-specific recombinases. , 1998, Nucleic acids research.

[73]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[74]  H. Berman,et al.  New parameters for the refinement of nucleic acid-containing structures. , 1996, Acta crystallographica. Section D, Biological crystallography.

[75]  P. Sadowski The Flp Recombinase of th 2-μm Plasmid of Saccharomyces cerevisiae , 1995 .

[76]  G. Kleywegt,et al.  Halloween ... Masks and Bones , 1994 .

[77]  R. Hoess,et al.  Evidence for a second conserved arginine residue in the integrase family of recombination proteins. , 1992, Protein engineering.