Transcriptomic and morphophysiological evidence for a specialized human cortical GABAergic cell type

[1]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2018, Nature.

[2]  Fan Zhang,et al.  Production of a Preliminary Quality Control Pipeline for Single Nuclei RNA-Seq and Its Application in the Analysis of Cell Type Diversity of Post-Mortem Human Brain Neocortex , 2017, PSB.

[3]  G. Tamás,et al.  Plasticity in Single Axon Glutamatergic Connection to GABAergic Interneurons Regulates Complex Events in the Human Neocortex , 2016, PLoS biology.

[4]  Guy Eyal,et al.  Unique membrane properties and enhanced signal processing in human neocortical neurons , 2016, eLife.

[5]  Allan R. Jones,et al.  Comprehensive cellular‐resolution atlas of the adult human brain , 2016, The Journal of comparative neurology.

[6]  Márton Rózsa,et al.  Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles , 2016, eLife.

[7]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[8]  M. Ronaghi,et al.  Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain , 2016, Science.

[9]  Sara B. Linker,et al.  Corrigendum: Nuclear RNA-seq of single neurons reveals molecular signatures of activation , 2016, Nature Communications.

[10]  Jonathan Y. Hsu,et al.  Nuclear RNA-seq of single neurons reveals molecular signatures of activation , 2016, Nature Communications.

[11]  Paul Leonard Gabbott “Subpial Fan Cell” — A Class of Calretinin Neuron in Layer 1 of Adult Monkey Prefrontal Cortex , 2016, Front. Neuroanat..

[12]  E. Marder,et al.  Computational implications of biophysical diversity and multiple timescales in neurons and synapses for circuit performance , 2016, Current Opinion in Neurobiology.

[13]  Sara B. Linker,et al.  Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons , 2016, Nature Protocols.

[14]  Christof Koch,et al.  Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics , 2016, Nature Neuroscience.

[15]  Joseph L. Herman,et al.  Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis , 2015, Nature Methods.

[16]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[17]  Allan R. Jones,et al.  Canonical Genetic Signatures of the Adult Human Brain , 2015, Nature Neuroscience.

[18]  James G. King,et al.  Reconstruction and Simulation of Neocortical Microcircuitry , 2015, Cell.

[19]  Guy Eyal,et al.  Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex , 2015, Cerebral cortex.

[20]  Xiaolong Jiang,et al.  Canonical Organization of Layer 1 Neuron-Led Cortical Inhibitory and Disinhibitory Interneuronal Circuits. , 2015, Cerebral cortex.

[21]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[22]  Csaba Varga,et al.  Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex , 2015, Cerebral cortex.

[23]  Yun Wang,et al.  A Subtype of Inhibitory Interneuron with Intrinsic Persistent Activity in Human and Monkey Neocortex. , 2015, Cell reports.

[24]  S. Linnarsson,et al.  Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq , 2015, Science.

[25]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[26]  Daniele Linaro,et al.  High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex , 2014, PLoS biology.

[27]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[28]  Juan Carlos Fernández,et al.  Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms , 2014, Ann. Oper. Res..

[29]  R. Yuste,et al.  Random Positions of Dendritic Spines in Human Cerebral Cortex , 2014, The Journal of Neuroscience.

[30]  Balázs Rózsa,et al.  Combined Two-Photon Imaging, Electrophysiological, and Anatomical Investigation of the Human Neocortex in Vitro , 2014, Neurophotonics.

[31]  Jochen F. Staiger,et al.  Revisiting enigmatic cortical calretinin-expressing interneurons , 2014, Front. Neuroanat..

[32]  Allan R. Jones,et al.  Transcriptional Landscape of the Prenatal Human Brain , 2014, Nature.

[33]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[34]  M. Ghert,et al.  Lost in translation: animal models and clinical trials in cancer treatment. , 2014, American journal of translational research.

[35]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[36]  Åsa K. Björklund,et al.  Full-length RNA-seq from single cells using Smart-seq2 , 2014, Nature Protocols.

[37]  N. Barnard,et al.  Animal models of Alzheimer disease: historical pitfalls and a path forward. , 2014, ALTEX.

[38]  R. Yuste,et al.  Axo-dendritic overlap and laminar projection can explain interneuron connectivity to pyramidal cells. , 2013, Cerebral cortex.

[39]  F. Gage,et al.  RNA-sequencing from single nuclei , 2013, Proceedings of the National Academy of Sciences.

[40]  C. D. de Kock,et al.  Mechanisms Underlying the Rules for Associative Plasticity at Adult Human Neocortical Synapses , 2013, The Journal of Neuroscience.

[41]  Robert Gentleman,et al.  Software for Computing and Annotating Genomic Ranges , 2013, PLoS Comput. Biol..

[42]  László G Puskás,et al.  Digital PCR to determine the number of transcripts from single neurons after patch-clamp recording. , 2013, BioTechniques.

[43]  Concha Bielza,et al.  New insights into the classification and nomenclature of cortical GABAergic interneurons , 2013, Nature Reviews Neuroscience.

[44]  Márton Rózsa,et al.  Fluoxetine (Prozac) and Serotonin Act on Excitatory Synaptic Transmission to Suppress Single Layer 2/3 Pyramidal Neuron-Triggered Cell Assemblies in the Human Prefrontal Cortex , 2012, The Journal of Neuroscience.

[45]  G. Paxinos,et al.  Paxinos and Franklin's the Mouse Brain in Stereotaxic Coordinates , 2012 .

[46]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[47]  Wei Li,et al.  RSeQC: quality control of RNA-seq experiments , 2012, Bioinform..

[48]  T. Freund,et al.  Multiple functions of endocannabinoid signaling in the brain. , 2012, Annual review of neuroscience.

[49]  Chris Williams,et al.  RNA-SeQC: RNA-seq metrics for quality control and process optimization , 2012, Bioinform..

[50]  Allan R. Jones,et al.  Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures , 2012, Cell.

[51]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[52]  M. Larkum,et al.  The Cellular Basis of GABAB-Mediated Interhemispheric Inhibition , 2012, Science.

[53]  Colin N. Dewey,et al.  RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome , 2011, BMC Bioinformatics.

[54]  Szabolcs Káli,et al.  Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics , 2010, The Journal of physiology.

[55]  C. D. de Kock,et al.  Frontiers in Synaptic Neuroscience Synaptic Neuroscience , 2022 .

[56]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[57]  Csaba Varga,et al.  Regulation of cortical microcircuits by unitary GABAergic volume transmission , 2009, Nature.

[58]  A. Nobel,et al.  Statistical Significance of Clustering for High-Dimension, Low–Sample Size Data , 2008 .

[59]  Csaba Varga,et al.  Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex , 2008, PLoS biology.

[60]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[61]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.

[62]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[63]  G. Tamás,et al.  Output of Neurogliaform Cells to Various Neuron Types in the Human and Rat Cerebral Cortex , 2007, Frontiers in neural circuits.

[64]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[65]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[66]  J. Allman,et al.  Intuition and autism: a possible role for Von Economo neurons , 2005, Trends in Cognitive Sciences.

[67]  H. Firth,et al.  Disruption of Netrin G1 by a balanced chromosome translocation in a girl with Rett syndrome , 2005, European Journal of Human Genetics.

[68]  H. Markram,et al.  Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. , 2004, Cerebral cortex.

[69]  F. Karube,et al.  Axon Branching and Synaptic Bouton Phenotypes in GABAergic Nonpyramidal Cell Subtypes , 2004, The Journal of Neuroscience.

[70]  S. Anderson,et al.  Origins of Cortical Interneuron Subtypes , 2004, The Journal of Neuroscience.

[71]  A. Munnich,et al.  Truncating Neurotrypsin Mutation in Autosomal Recessive Nonsyndromic Mental Retardation , 2002, Science.

[72]  G. Elston Pyramidal Cells of the Frontal Lobe: All the More Spinous to Think With , 2000, The Journal of Neuroscience.

[73]  H. Eisenberg,et al.  Nicotinic Receptor Activation in Human Cerebral Cortical Interneurons: a Mechanism for Inhibition and Disinhibition of Neuronal Networks , 2000, The Journal of Neuroscience.

[74]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[75]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[76]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[77]  P. Somogyi,et al.  Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. , 1997, The Journal of physiology.

[78]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[79]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[80]  J. Morrison,et al.  Spindle neurons of the human anterior cingul. Ate cortex , 1995, The Journal of comparative neurology.

[81]  B. Sakmann,et al.  Active propagation of somatic action potentials into neocortical pyramidal cell dendrites , 1994, Nature.

[82]  R. Sturrock Cajal on the Cerebral Cortex. , 1990 .

[83]  P. Somogyi,et al.  Synapses, axonal and dendritic patterns of GABA-immunoreactive neurons in human cerebral cortex. , 1990, Brain : a journal of neurology.

[84]  S. Cajal Cajal on the cerebral cortex , 1988 .

[85]  Z. Kisvárday,et al.  Synaptic connections of axo-axonic (chandelier) cells in human epileptic temporal cortex , 1986, Neuroscience.

[86]  D. Whitteridge,et al.  Synaptic connections of intracellularly filled clutch cells: A type of small basket cell in the visual cortex of the cat , 1985, The Journal of comparative neurology.

[87]  P. Somogyi A specific ‘axo-axonal’ interneuron in the visual cortex of the rat , 1977, Brain Research.

[88]  M. Arbib,et al.  Conceptual models of neural organization. , 1974, Neurosciences Research Program bulletin.

[89]  C. Economo,et al.  Eine neue art spezialzellen des lobus cinguli und lobus insulae , 1926 .