Effective Equations for Two-Phase Flow with Trapping on the Micro Scale

In this paper we consider water-drive for recovering oil from a strongly heterogeneous porous column. The two-phase model uses Corey relative permeabilities and Brooks--Corey capillary pressure. The heterogeneities are perpendicular to the flow and have a periodic structure. This results in one-dimensional flow and a space periodic absolute permeability, reflecting alternating coarse and fine layers. Assuming many---or thin---layers, we use homogenization techniques to derive the effective transport equations. The form of these equations depends critically on the capillary number. The analysis is confirmed by numerical experiments.

[1]  渡邉 道昭 AN APPROACH BY DIFFERENCE TO THE POROUS MEDIUM EQUATION WITH CONVECTION , 1995 .

[2]  Stephan Luckhaus,et al.  Quasilinear elliptic-parabolic differential equations , 1983 .

[3]  Steinar Evje,et al.  Monotone Difference Approximations Of BV Solutions To Degenerate Convection-Diffusion Equations , 2000, SIAM J. Numer. Anal..

[4]  J. Mykkeltveit,et al.  Effective Relative Permeabilities and Capillary Pressure for One-Dimensional Heterogeneous Media , 1997 .

[5]  B. Gilding The occurrence of interfaces in nonlinear diffusion-advection processes , 1988 .

[6]  J. Molenaar,et al.  The effect of capillary forces on immiscible two-phase flow in heterogeneous porous media , 1995 .

[7]  Jincai Chang,et al.  Capillary effects in steady-state flow in heterogeneous cores , 1989 .

[8]  Andro Mikelić,et al.  The derivation of a nonlinear filtration law including the inertia effects via homogenization , 2000 .

[9]  U. Hornung Homogenization and porous media , 1996 .

[10]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[11]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[12]  A. Mikelić Homogenization theory and applications to filtration through porous media , 2000 .

[13]  Effets inertiels pour un écoulement stationnaire visqueux incompressible dans un milieu poreux , 1995 .

[14]  P. Bénilan,et al.  Sur l'équation générale ut = a(., u, φ(., u)x)x + ν dans L1 : II. Le problème d'évolution , 1995 .

[15]  G. Chavent Mathematical models and finite elements for reservoir simulation , 1986 .

[16]  T. Kortekaas Water/Oil Displacement Characteristics in Crossbedded Reservoir Zones , 1985 .

[17]  V. Duijn,et al.  Mathematical analysis of the influence of power-law fluid rheology on a capillary diffusion zone , 1992 .

[18]  Alain Bourgeat,et al.  WEAK NONLINEAR CORRECTIONS FOR DARCY’S LAW , 1996 .

[19]  M. C. Leverett,et al.  Capillary Behavior in Porous Solids , 1941 .

[20]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[21]  Q. Ye,et al.  The flow of two immiscible fluids through a porous medium , 1984 .

[22]  B. Gilding Qualitative mathematical analysis of the Richards equation , 1990 .

[23]  C. J. van Duijn,et al.  Analysis of Oil Trapping in Porous Media Flow , 2003, SIAM J. Math. Anal..