Lithium extraction from clay-type lithium resource using ferric sulfate solutions via an ion-exchange leaching process

[1]  R. Honaker,et al.  Lithium leaching recovery and mechanisms from density fractions of an Illinois Basin bituminous coal , 2020 .

[2]  Ning Wang,et al.  Theoretical-molar Fe3+ recovering lithium from spent LiFePO4 batteries: an acid-free, efficient, and selective process. , 2020, Journal of hazardous materials.

[3]  S. Castor,et al.  Lithium-Rich Claystone in the McDermitt Caldera, Nevada, USA: Geologic, Mineralogical, and Geochemical Characteristics and Possible Origin , 2020 .

[4]  François Renard,et al.  Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation , 2020 .

[5]  Ning Wang,et al.  Leaching efficiency of sulfuric acid on selective lithium leachability from bauxitic claystone , 2020 .

[6]  A. Karrech,et al.  A review on methods for liberating lithium from pegmatities , 2020 .

[7]  L. Kovarik,et al.  Electron transfer between sorbed Fe(II) and structural Fe(III) in smectites and its effect on nitrate-dependent iron oxidation by Pseudogulbenkiania sp. strain 2002 , 2019, Geochimica et Cosmochimica Acta.

[8]  Yunfeng Song,et al.  A promising approach for directly extracting lithium from α-spodumene by alkaline digestion and precipitation as phosphate , 2019, Hydrometallurgy.

[9]  J. González,et al.  Efficient extraction of lithium from β-spodumene by direct roasting with NaF and leaching , 2019, Chemical Engineering Research and Design.

[10]  Yue-hua Hu,et al.  Systematic review of lithium extraction from salt-lake brines via precipitation approaches , 2019, Minerals Engineering.

[11]  Peng Xing,et al.  Lithium Extraction and Hydroxysodalite Zeolite Synthesis by Hydrothermal Conversion of α-Spodumene , 2019, ACS Sustainable Chemistry & Engineering.

[12]  L. H. Lalasari,et al.  Effect of Leaching Temperature on Lithium Recovery fromLi-Montmorillonite (Bledug Kuwu’s Mud) , 2019, IOP Conference Series: Materials Science and Engineering.

[13]  B. Albijanic,et al.  The beneficiation of lithium minerals from hard rock ores: A review , 2019, Minerals Engineering.

[14]  Yang Li,et al.  Carbonate-hosted clay-type lithium deposit and its prospecting significance , 2019 .

[15]  J. Magnan,et al.  Impact of the impurities on lithium extraction from β-spodumene in the sulfuric acid process , 2018, Minerals Engineering.

[16]  Huan Li,et al.  Extraction of lithium from β-spodumene using sodium sulfate solution , 2018 .

[17]  E. Bobicki,et al.  Lithium Extraction and Utilization: A Historical Perspective , 2018 .

[18]  Meng Wang,et al.  Compaction of montmorillonite in ultra-dry state , 2017 .

[19]  G. Mahood,et al.  Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins , 2017, Nature Communications.

[20]  Hong He,et al.  Influence of interlayer species on the thermal characteristics of montmorillonite , 2017 .

[21]  Hui Guo,et al.  Fundamental Research on a New Process to Remove Al3+ as Potassium Alum during Lithium Extraction from Lepidolite , 2016, Metallurgical and Materials Transactions B.

[22]  Qian Zhang,et al.  Study on the surface speciation of Fe-pillared montmorillonite and mechanism of its photocatalytic effect on degradation of ionic dye rhodamine-B , 2016 .

[23]  V. Rives,et al.  Structural, textural and acidic properties of Cu-, Fe- and Cr-doped Ti-pillared montmorillonites , 2015 .

[24]  Liu Hongxin,et al.  Adsorption of ferrous ions onto montmorillonites , 2015 .

[25]  L. Cabeza,et al.  Lithium in thermal energy storage: A state-of-the-art review , 2015 .

[26]  B. D. Pandey,et al.  Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: A comprehensive review , 2014 .

[27]  G. Mudd,et al.  Lithium Resources and Production: Critical Assessment and Global Projections , 2012 .

[28]  Xiaojun Wang,et al.  Cation exchange, interlayer spacing, and thermal analysis of Na/Ca-montmorillonite modified with alkaline and alkaline earth metal ions , 2012, Journal of Thermal Analysis and Calorimetry.

[29]  A. Fujishima,et al.  Effect of exchangeable cations on apparent diffusion of Ca2+ ions in Na- and Ca-montmorillonite mixtures , 2010 .

[30]  Nengwu Zhu,et al.  Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation. , 2009, Journal of hazardous materials.

[31]  J. E. Dutrizac,et al.  The behaviour of scandium, yttrium and uranium during jarosite precipitation , 2009 .

[32]  M. Avena,et al.  Synthesis and characterization of Fe(III)-montmorillonites for phosphate adsorption , 2009 .

[33]  M. Blazquez,et al.  Passivation of chalcopyrite during its chemical leaching with ferric ion at 68 °C , 2009 .

[34]  J. Dutrizac Factors Affecting the Precipitation of Potassium Jarosite in Sulfate and Chloride Media , 2008 .

[35]  A. Amer The hydrometallurgical extraction of lithium from egyptian montmorillonite-type clay , 2008 .

[36]  G. Valdrè,et al.  Thermal and structural properties of Ca-rich Montmorillonite mechanically deformed by compaction and shear , 2006 .

[37]  H. Ohashi,et al.  Effects of dry density and exchangeable cations on the diffusion process of sodium ions in compacted montmorillonite , 2005 .

[38]  G. Köksal,et al.  An Attempt to Minimize the Cost of Extracting Lithium from Boron Clays Through Robust Process Design , 2005 .

[39]  J. Rytuba,et al.  Lithium in the McDermitt caldera, Nevada and Oregon , 1978 .

[40]  A. O. Woodford,et al.  Bentonitic magnesian clay mineral from California , 1936 .