Lattice - Based Cryptography - Security Foundations and Constructions

Lattice-based cryptography is a branch of cryptography exploiting the presumed hardness of some well-known problems on lattices. Its main advantages are its simplicity, efficiency, and apparent security against quantum computers. The principle of the security proofs in lattice-based cryptography is to show that attacking a given scheme is at least as hard as solving a particular problem, as the Learning with Errors problem (LWE) or the Small Integer Solution problem (SIS). Then, by showing that those two problems are at least as hard to solve than a hard problem on lattices, presumed polynomial time intractable, we conclude that the constructed scheme is secure.In this thesis, we improve the foundation of the security proofs and build new cryptographic schemes. We study the hardness of the SIS and LWE problems, and of some of their variants on integer rings of cyclotomic fields and on modules on those rings. We show that there is a classical hardness proof for the LWE problem (Regev's prior reduction was quantum), and that the module variants of SIS and LWE are also hard to solve. We also give two new lattice-based group signature schemes, with security based on SIS and LWE. One is the first lattice-based group signature with logarithmic signature size in the number of users. And the other construction allows another functionality, verifier-local revocation. Finally, we improve the size of some parameters in the work on cryptographic multilinear maps of Garg, Gentry and Halevi in 2013.