Probabilistic Analysis of Projected Features in Binocular Stereo

To begin with, we will introduce the stereo system model that will be used for the analysis together with the notation that will be employed and the parameters that will be necessary for the calculations. Afterwards, we will use this model to derive the joint probability density function (pdf) of the orientation of the projections on the image planes of arbitrary small edges. In this case, we will find a cumbersome expression so, then, we will focus on the derivation of a tractable pdf of a convenient function of the orientation of the projections.

[1]  H. Barlow The efficiency of detecting changes of density in random dot patterns , 1978, Vision Research.

[2]  Ze-Nian Li,et al.  Analysis of disparity gradient based cooperative stereo , 1996, IEEE Trans. Image Process..

[3]  Yoshiaki Shirai,et al.  Three-Dimensional Computer Vision , 1987, Symbolic Computation.

[4]  Takeo Kanade,et al.  A Stereo Matching Algorithm with an Adaptive Window: Theory and Experiment , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  A Blake,et al.  3D model recognition from stereoscopic cues , 1991 .

[6]  P. Peebles Probability, Random Variables and Random Signal Principles , 1993 .

[7]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[8]  Lorenzo J. Tardón,et al.  Markov random fields and the disparity gradient constraint applied to stereo correspondence , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[9]  J P Frisby,et al.  PMF: A Stereo Correspondence Algorithm Using a Disparity Gradient Limit , 1985, Perception.

[10]  Zhengyou Zhang,et al.  Determining the Epipolar Geometry and its Uncertainty: A Review , 1998, International Journal of Computer Vision.

[11]  Emanuele Trucco,et al.  Introductory techniques for 3-D computer vision , 1998 .

[12]  W. Eric L. Grimson,et al.  Computational Experiments with a Feature Based Stereo Algorithm , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  J. Mayhew,et al.  Disparity Gradient, Lipschitz Continuity, and Computing Binocular Correspondences , 1985 .

[14]  Henry Stark,et al.  Probability, Random Processes, and Estimation Theory for Engineers , 1995 .

[15]  Lorenzo J. Tardón,et al.  A novel Markovian formulation of the correspondence problem in stereo vision , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[16]  Mohan M. Trivedi,et al.  Region-based stereo analysis for robotic applications , 1989, IEEE Trans. Syst. Man Cybern..

[17]  Terry Caelli,et al.  Bayesian Stereo Matching , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[18]  H. Barlow,et al.  The versatility and absolute efficiency of detecting mirror symmetry in random dot displays , 1979, Vision Research.

[19]  Ramakant Nevatia,et al.  Stereo Error Detection, Correction, and Evaluation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[21]  B. Julesz,et al.  Modifications of the Classical Notion of Panum's Fusional Area , 1980, Perception.

[22]  Mohan M. Trivedi,et al.  Multi-Primitive Hierarchical (MPH) Stereo Analysis , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Denis Laurendeau,et al.  Special Issue on Computer Vision , 2006 .

[24]  John E. W. Mayhew,et al.  3D Model Recognition from Stereoscopic Cues , 1991 .

[25]  Cho To,et al.  Probability, Random Variables, and Random Processes , 2016 .

[26]  Li Zhang,et al.  Estimating Optimal Parameters for MRF Stereo from a Single Image Pair , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.