Role of the Hubble scale in the weak lensing versus CMB tension

[1]  R. Mandelbaum,et al.  A Unified Catalog-level Reanalysis of Stage-III Cosmic Shear Surveys , 2022, 2208.07179.

[2]  B. Sherwin,et al.  Restoring cosmological concordance with early dark energy and massive neutrinos? , 2022, 2207.01501.

[3]  E. Komatsu,et al.  New Constraint on Early Dark Energy from Planck and BOSS Data Using the Profile Likelihood , 2021, The Astrophysical Journal Letters.

[4]  David O. Jones,et al.  A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team , 2021, The Astrophysical Journal Letters.

[5]  OUP accepted manuscript , 2022, Monthly Notices of the Royal Astronomical Society.

[6]  J. Lesgourgues,et al.  The $H_0$ Olympics: A fair ranking of proposed models , 2021, 2107.10291.

[7]  A. Hall Cosmology from weak lensing alone and implications for the Hubble tension , 2021, Monthly Notices of the Royal Astronomical Society.

[8]  G. Efstathiou To H0 or not to H0? , 2021, 2103.08723.

[9]  D. Gerdes,et al.  Assessing tension metrics with dark energy survey and Planck data , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  H. Hoekstra,et al.  KiDS-1000 cosmology: Cosmic shear constraints and comparison between two point statistics , 2020, Astronomy & Astrophysics.

[11]  R. B. Barreiro,et al.  Planck 2018 results: V. CMB power spectra and likelihoods , 2020 .

[12]  A. Leauthaud,et al.  Cosmological constraints from cosmic shear two-point correlation functions with HSC survey first-year data , 2019, Publications of the Astronomical Society of Japan.

[13]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[14]  R. Beaton,et al.  The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch , 2019, The Astrophysical Journal.

[15]  Marius Millea,et al.  Sounds Discordant: Classical Distance Ladder and ΛCDM-based Determinations of the Cosmological Sound Horizon , 2018, The Astrophysical Journal.

[16]  David N. Spergel,et al.  Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data , 2018, Publications of the Astronomical Society of Japan.

[17]  J. Lesgourgues,et al.  MontePython 3: Boosted MCMC sampler and other features , 2018, Physics of the Dark Universe.

[18]  Scott Dodelson,et al.  A unified analysis of four cosmic shear surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  Adam G. Riess,et al.  The trouble with H0 , 2016, 1607.05617.

[20]  Saba Sehrish,et al.  CosmoSIS: Modular cosmological parameter estimation , 2014, Astron. Comput..

[21]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[22]  K. Benabed,et al.  Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code , 2012, 1210.7183.

[23]  M. Fukugita,et al.  Cosmic Microwave Background Observables and Their Cosmological Implications , 2001 .

[24]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[25]  Wayne Hu,et al.  Power Spectra for Cold Dark Matter and Its Variants , 1997, astro-ph/9710252.

[26]  Uros Seljak,et al.  Cosmological Model Predictions for Weak Lensing: Linear and Nonlinear Regimes , 1996, astro-ph/9611077.