From microscopic to macroscopic description of multicellular systems and biological growing tissues

This paper presents an asymptotic theory for a large class of Boltzmann-type equations suitable to model the evolution of multicellular systems in biology. The mathematical approach described herein shows how various types of diffusion phenomena, linear and nonlinear, can be obtained in suitable asymptotic limits. Time scaling related to cell movement and biological activity are shown to play a crucial role in determining the macroscopic equations corresponding to each case.

[1]  M. Smoluchowski,et al.  Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .

[2]  R. Firtel,et al.  Just the right size: cell counting in Dictyostelium. , 2000, Trends in genetics : TIG.

[3]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations Derived from Velocity-Jump Processes , 2000, SIAM J. Appl. Math..

[4]  C. Schmeiser,et al.  MODEL HIERARCHIES FOR CELL AGGREGATION BY CHEMOTAXIS , 2006 .

[5]  Radek Erban,et al.  From Signal Transduction to Spatial Pattern Formation in E. coli: A Paradigm for Multiscale Modeling in Biology , 2005 .

[6]  Abdelghani Bellouquid ON THE ASYMPTOTIC ANALYSIS OF KINETIC MODELS TOWARDS THE COMPRESSIBLE EULER AND ACOUSTIC EQUATIONS , 2004 .

[7]  Abdelghani Bellouquid,et al.  A DIFFUSIVE LIMIT FOR NONLINEAR DISCRETE VELOCITY MODELS , 2003 .

[8]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations II: Chemotaxis Equations , 2002, SIAM J. Appl. Math..

[9]  Luigi Preziosi,et al.  Cancer Modelling and Simulation , 2003 .

[10]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[11]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[12]  A. Bertuzzi,et al.  A MATHEMATICAL MODEL FOR TUMOR CORDS INCORPORATING THE FLOW OF INTERSTITIAL FLUID , 2005 .

[13]  B. Sleeman,et al.  Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma , 2001 .

[14]  M. Lachowicz MICRO AND MESO SCALES OF DESCRIPTION CORRESPONDING TO A MODEL OF TISSUE INVASION BY SOLID TUMOURS , 2005 .

[15]  Luigi Preziosi,et al.  Multiscale modeling and mathematical problems related to tumor evolution and medical therapy. , 2003 .

[16]  A. Bellouquid,et al.  Kinetic (cellular) models of cell progression and competition with the immune system , 2004 .

[17]  Miguel A. Herrero,et al.  Bone formation: Biological aspects and modelling problems , 2005 .

[18]  M. A. Herrero,et al.  Singularity patterns in a chemotaxis model , 1996 .

[19]  Radek Erban,et al.  From Individual to Collective Behavior in Bacterial Chemotaxis , 2004, SIAM J. Appl. Math..

[20]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[21]  H. Othmer,et al.  Models of dispersal in biological systems , 1988, Journal of mathematical biology.

[22]  N. Bellomo,et al.  Looking for new paradigms towards a biological-mathematical theory of complex multicellular systems , 2006 .

[23]  N. Bellomo,et al.  From a class of kinetic models to the macroscopic equations for multicellular systems in biology , 2003 .

[24]  Thomas Hillen,et al.  THE LANGEVIN OR KRAMERS APPROACH TO BIOLOGICAL MODELING , 2004 .

[25]  Miguel A. Herrero,et al.  Reaction-diffusion systems: a mathematical biology approach , 2003 .

[26]  J. S. Parkinson,et al.  A model of excitation and adaptation in bacterial chemotaxis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[28]  V. Nanjundiah,et al.  Chemotaxis, signal relaying and aggregation morphology. , 1973, Journal of theoretical biology.

[29]  Angela Stevens,et al.  The Derivation of Chemotaxis Equations as Limit Dynamics of Moderately Interacting Stochastic Many-Particle Systems , 2000, SIAM J. Appl. Math..

[30]  M. Lachowicz ASYMPTOTIC ANALYSIS OF NONLINEAR KINETIC EQUATIONS: THE HYDRODYNAMIC LIMIT , 1995 .

[31]  J. V. Hurley,et al.  Chemotaxis , 2005, Infection.

[32]  M. A. Herrero,et al.  Chemotactic collapse for the Keller-Segel model , 1996, Journal of mathematical biology.

[33]  Maria Letizia Bertotti,et al.  FROM DISCRETE KINETIC AND STOCHASTIC GAME THEORY TO MODELLING COMPLEX SYSTEMS IN APPLIED SCIENCES , 2004 .

[34]  Andreas Deutsch,et al.  Dynamics of cell and tissue motion , 1997 .

[35]  Nicola Bellomo,et al.  Lecture Notes on the Mathematical Theory of Generalized Boltzmann Models , 2000 .

[36]  Richard Gomer,et al.  Cell motility mediates tissue size regulation in Dictyostelium , 2004, Journal of Muscle Research & Cell Motility.

[37]  Stanley J. Wiegand,et al.  Vascular-specific growth factors and blood vessel formation , 2000, Nature.

[38]  A. Bellouquid,et al.  Mathematical methods and tools of kinetic theory towards modelling complex biological systems , 2005 .

[39]  A. Friedman,et al.  ANALYSIS OF A MATHEMATICAL MODEL OF TUMOR LYMPHANGIOGENESIS , 2005 .

[40]  N Bellomo,et al.  Lecture Notes on Mathematical Theory of the Boltzmann Equation , 1995 .

[41]  N. Bellomo,et al.  On the onset of non-linearity for diffusion models of binary mixtures of biological materials by asymptotic analysis , 2006 .

[42]  B. Sleeman,et al.  Mathematical modeling of capillary formation and development in tumor angiogenesis: Penetration into the stroma , 2001, Bulletin of mathematical biology.

[43]  Jay D. Humphrey,et al.  A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES , 2002 .

[44]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .