Fast Holonomic Quantum Computation on Superconducting Circuits With Optimal Control

The phase factor plays a vital role in modern quantum physics. Especially, geometric phases induced in quantum evolutions have the built-in noise-resilient character, and thus found comprehensive applications in many robust quantum manipulation tasks. Here, we propose a fast scheme to construct universal quantum gates on superconducting circuits with non-Abelian geometric phases using resonant interaction of three-level quantum system. As the evolution state always fulfill the Schrodinger equation of the govern Hamiltonian, during the cyclic quantum evolution, there will be no nonadiabatic transitions among the evolution states. Meanwhile, arbitrary single-qubit quantum gates can be implemented in a single-loop scenario by shaping both the amplitudes and phases of two microwave fields resonantly coupled to a transmon qubit. Moreover, nontrivial two-qubit gates can also be realized with an auxiliary transmon simultaneously coupled to the two target transmons in an effective resonant way. In particular, our proposal can be compatible to various optimal control techniques, which further enhances the robustness of the quantum operations. Therefore, our proposal represents a promising way towards fault-tolerant quantum computation on solid-state quantum circuits.

[1]  Z. Xue,et al.  Nonadiabatic holonomic quantum computation with all-resonant control , 2016, 1601.07219.

[2]  D. Alonso,et al.  Optimally robust shortcuts to population inversion in two-level quantum systems , 2012, 1206.1691.

[3]  Sabrina Hong,et al.  Demonstration of universal parametric entangling gates on a multi-qubit lattice , 2017, Science Advances.

[4]  Zhensheng Zhang,et al.  Experimental Realization of Nonadiabatic Shortcut to Non-Abelian Geometric Gates. , 2018, Physical review letters.

[5]  Vahid Azimi Mousolou Electric nonadiabatic geometric entangling gates on spin qubits , 2016, 1612.04500.

[6]  D. Tong,et al.  Path-shortening realizations of nonadiabatic holonomic gates , 2018, Physical Review A.

[7]  P. Zanardi,et al.  Quantum computation in noiseless subsystems with fast non-Abelian holonomies , 2013, 1308.1919.

[8]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  S Guérin,et al.  Robust quantum control by a single-shot shaped pulse. , 2013, Physical review letters.

[10]  Vahid Azimi Mousolou Scalable star-shape architecture for universal spin-based nonadiabatic holonomic quantum computation. , 2018, 1808.08547.

[11]  C. Lam,et al.  Non-Abelian holonomic transformation in the presence of classical noise , 2017, 1701.08234.

[12]  Guilu Long,et al.  Universal Nonadiabatic Geometric Gates in Two-Qubit Decoherence-Free Subspaces , 2014, Scientific reports.

[13]  A. Falcon Physics I.1 , 2018 .

[14]  D. Russell,et al.  Parametrically Activated Entangling Gates Using Transmon Qubits , 2017, Physical Review Applied.

[15]  E. Sjoqvist,et al.  Single-loop multiple-pulse nonadiabatic holonomic quantum gates , 2016, 1608.07418.

[16]  Shi-Liang Zhu,et al.  Geometric quantum gates that are robust against stochastic control errors , 2005 .

[17]  이화영 X , 1960, Chinese Plants Names Index 2000-2009.

[18]  D. Tong,et al.  Nonadiabatic geometric quantum computation in decoherence-free subspaces based on unconventional geometric phases , 2016, 1612.08466.

[19]  D. M. Tong,et al.  Non-adiabatic Holonomic Gates realized by a single-shot implementation , 2015, 1511.00919.

[20]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[21]  V. O. Shkolnikov,et al.  Holonomic Quantum Control by Coherent Optical Excitation in Diamond. , 2017, Physical review letters.

[22]  Paolo Zanardi,et al.  Robustness of non-Abelian holonomic quantum gates against parametric noise , 2004 .

[23]  Ivano Tavernelli,et al.  Entanglement Generation in Superconducting Qubits Using Holonomic Operations , 2018, Physical Review Applied.

[24]  N. Zanghí,et al.  On the stability of quantum holonomic gates , 2012, 1209.1693.

[25]  Erik Sjöqvist,et al.  Environment-Assisted Holonomic Quantum Maps. , 2018, Physical review letters.

[26]  S. Berger,et al.  Microwave-Induced Amplitude and Phase Tunable Qubit-Resonator Coupling in Circuit Quantum Electrodynamics , 2015, 1502.03692.

[27]  P. Leek,et al.  Coherence and decay of higher energy levels of a superconducting transmon qubit. , 2014, Physical review letters.

[28]  Hideo Kosaka,et al.  Optical holonomic single quantum gates with a geometric spin under a zero field , 2017 .

[29]  Yang Liu,et al.  Experimental realization of single-shot nonadiabatic holonomic gates in nuclear spins , 2017, 1703.10348.

[30]  Franco Nori,et al.  Comparison of the sensitivity to systematic errors between nonadiabatic non-Abelian geometric gates and their dynamical counterparts , 2016, 1603.08061.

[31]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[32]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[33]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[34]  D. M. Tong,et al.  Composite nonadiabatic holonomic quantum computation , 2017, 1706.01053.

[35]  Aharonov,et al.  Phase change during a cyclic quantum evolution. , 1987, Physical review letters.

[36]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.

[37]  Stefan W. Hell,et al.  Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin , 2014, Nature Communications.

[38]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[39]  D. M. Tong,et al.  Single-shot realization of nonadiabatic holonomic quantum gates in decoherence-free subspaces , 2017, 1706.02967.

[40]  Tao Chen,et al.  Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit. , 2018, Physical review letters.

[41]  Vahid Azimi Mousolou,et al.  Non-Abelian geometric phases in a system of coupled quantum bits , 2013, 1307.5315.

[42]  W Xiang-Bin,et al.  Nonadiabatic conditional geometric phase shift with NMR. , 2001, Physical review letters.

[43]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[44]  Zach DeVito,et al.  Opt , 2017 .

[45]  Erik Sjöqvist,et al.  Nonadiabatic holonomic single-qubit gates in off-resonant Λ systems , 2016 .

[46]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[47]  H. Kosaka,et al.  Universal holonomic quantum gates over geometric spin qubits with polarised microwaves , 2018, Nature Communications.

[48]  Tao Chen,et al.  Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. , 2018, 1806.03886.

[49]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[50]  Xin Wang,et al.  Plug-and-Play Approach to Nonadiabatic Geometric Quantum Gates. , 2018, Physical review letters.

[51]  D. M. Tong,et al.  Robustness of nonadiabatic holonomic gates , 2012, 1204.5144.

[52]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[53]  Christiane P. Koch,et al.  Charting the circuit QED design landscape using optimal control theory , 2016, 1606.08825.

[54]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[55]  G. Long,et al.  Searching nonadiabatic holonomic quantum gates via an optimization algorithm , 2019, Physical Review A.

[56]  Shi-Liang Zhu,et al.  Implementation of universal quantum gates based on nonadiabatic geometric phases. , 2002, Physical review letters.

[57]  Tao Chen,et al.  Single-Loop and Composite-Loop Realization of Nonadiabatic Holonomic Quantum Gates in a Decoherence-Free Subspace , 2019, Physical Review Applied.

[58]  H. Kosaka,et al.  Universal holonomic single quantum gates over a geometric spin with phase-modulated polarized light. , 2018, Optics letters.

[59]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[60]  J. Q. You,et al.  Nonadiabatic holonomic quantum computation with dressed-state qubits , 2016, 1612.03575.

[61]  S. Berger,et al.  Experimental realization of non-Abelian non-adiabatic geometric gates , 2013, Nature.

[62]  Z. D. Wang,et al.  Universal Holonomic Quantum Gates in Decoherence-free Subspace on Superconducting Circuits , 2015 .

[63]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[64]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[65]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[66]  Z. D. Wang,et al.  Implementing universal nonadiabatic holonomic quantum gates with transmons , 2017, 1710.03141.

[67]  Erik Sjöqvist,et al.  A new phase in quantum computation , 2008 .