Convolutional Codes and Coherent Sheaves

Abstract. We present a sheaf-theoretic setting for convolutional codes in that coherent sheaves (over a projective line) play the same role as finite-dimensional linear spaces in the theory of block codes. Using coherent sheaves (and their cohomologies), we give natural straightforward proofs of the main results on the structural properties of convolutional codes.

[1]  Philippe Piret,et al.  Convolutional Codes: An Algebraic Approach , 1988 .

[2]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[3]  V. Lomadze Finite-dimensional time-invariant linear dynamical systems: Algebraic theory , 1990, Acta Applicandae Mathematicae.

[4]  James L. Massey,et al.  Inverses of Linear Sequential Circuits , 1968, IEEE Transactions on Computers.

[5]  Rolf Johannesson,et al.  A linear algebra approach to minimal convolutional encoders , 1993, IEEE Trans. Inf. Theory.

[6]  Shu Lin,et al.  Error control coding : fundamentals and applications , 1983 .

[7]  Ettore Fornasini,et al.  Observability and extendability of finite support nD behaviors , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[8]  Hans-Andrea Loeliger,et al.  Convolutional codes over groups , 1996, IEEE Trans. Inf. Theory.

[9]  J. Massey,et al.  Codes, automata, and continuous systems: Explicit interconnections , 1967, IEEE Transactions on Automatic Control.

[10]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[11]  Robert Hermann,et al.  Applications of Algebraic Geometry to Systems Theory: The McMillan Degree and Kronecker Indices of Transfer Functions as Topological and Holomorphic System Invariants , 1978 .

[12]  Hans Grauert,et al.  Theorie der Steinschen Räume , 1977 .

[13]  Ludwig Staiger,et al.  Subspaces of GF(q)^w and Convolutional Codes , 1983, Inf. Control..

[14]  A. Grothendieck Sur La Classification Des Fibres Holomorphes Sur La Sphere de Riemann , 1957 .

[15]  Joachim Rosenthal,et al.  On behaviors and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[16]  W. Wolovich Linear multivariable systems , 1974 .

[17]  Rolf Johannesson,et al.  Fundamentals of Convolutional Coding , 1999 .

[18]  Mitchell D. Trott,et al.  The dynamics of group codes: State spaces, trellis diagrams, and canonical encoders , 1993, IEEE Trans. Inf. Theory.

[19]  C. Okonek,et al.  Vector bundles on complex projective spaces , 1980 .

[20]  Alexander Grothendieck,et al.  Techniques de construction et théorèmes d'existence en géométrie algébrique IV : les schémas de Hilbert , 1961 .

[21]  Jan C. Willems,et al.  From time series to linear system - Part II. Exact modelling , 1986, Autom..

[22]  H. Rosenbrock Structural properties of linear dynamical systems , 1974 .

[23]  Rolf Johannesson,et al.  Minimal and canonical rational generator matrices for convolutional codes , 1996, IEEE Trans. Inf. Theory.

[24]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[25]  Robin Hartshorne,et al.  Algebraic geometry , 1977, Graduate texts in mathematics.