State of art: Piezoelectric Vibration Energy Harvesters

Abstract This paper explains two novel piezoelectric vibration energy harvesters. One is lumped masssingle-axis impact lead ball piezoelectric vibration energy harvester(LMPVEH) and the other is clamped free beam single-axis impact lead ball piezoelectric vibration energy harvester(CMPVEH). Both energy harvesters works under the striking mass of lead ball and under the principle of direct piezoelectric effect and the piezoelectric material is lead zirconate titanate (PZT-5H) .Single-axis impact lead ball novel piezoelectric vibration energy harvesters are demonstrated along with the literature review in the table format. And also explained the effect of temperature in the performance of energy harvesters. The output voltage for LMPVEH is 25 Volts and the CMPVEH is 98 V.

[1]  Paul K. Wright,et al.  A piezoelectric vibration based generator for wireless electronics , 2004 .

[2]  R. B. Yates,et al.  Feasibility study of a vibration powered micro-electric generator , 1996 .

[3]  S. Farritor,et al.  On low-frequency electric power generation with PZT ceramics , 2005, IEEE/ASME Transactions on Mechatronics.

[4]  David W. Greve,et al.  Energy scavenging for sensor applications using structural strains , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[5]  Alperen Toprak,et al.  Piezoelectric energy harvesting: State-of-the-art and challenges , 2014 .

[6]  Yi-Chung Shu,et al.  Efficiency of energy conversion for a piezoelectric power harvesting system , 2006 .

[7]  Hidetoshi Tanaka,et al.  Electric power generation using piezoelectric resonator for power-free sensor node , 2005, Proceedings of the IEEE 2005 Custom Integrated Circuits Conference, 2005..

[8]  Sunghwan Kim,et al.  Low Power Energy Harvesting with Piezoelectric Generator , 2002 .

[9]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[10]  M. Weinberg Working equations for piezoelectric actuators and sensors , 1999 .

[11]  Joseph A. Paradiso,et al.  Parasitic power harvesting in shoes , 1998, Digest of Papers. Second International Symposium on Wearable Computers (Cat. No.98EX215).

[12]  M. Umeda,et al.  Analysis of the Transformation of Mechanical Impact Energy to Electric Energy Using Piezoelectric Vibrator , 1996 .

[13]  S. Priya Modeling of electric energy harvesting using piezoelectric windmill , 2005 .

[14]  G. Harbauer,et al.  Implantable physiological power supply with PVDF film , 1984 .

[15]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[16]  Gordon M. H. Chan,et al.  Infrared signal transmission by a laser-micromachined, vibration-induced power generator , 2000, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144).

[17]  B. Otis,et al.  PicoRadios for wireless sensor networks: the next challenge in ultra-low power design , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[18]  Timothy Eggborn Analytical Models to Predict Power Harvesting with Piezoelectric Materials , 2003 .

[19]  Yinyin Lin,et al.  Study on the tip-deflection of a piezoelectric bimorph cantilever in the static state , 2004 .

[20]  Rajeevan Amirtharajah Design of a low power VLSI systems powered by ambient mechanical vibration , 1999 .

[21]  Neil M. White,et al.  Towards a piezoelectric vibration-powered microgenerator , 2001 .

[22]  W. Hwang,et al.  Finite Element Modeling of Piezoelectric Sensors and Actuators , 1993 .

[23]  Anantha Chandrakasan,et al.  Vibration-to-electric energy conversion , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[24]  D. Marioli,et al.  Modeling, Fabrication and Performance Measurements of a Piezoelectric Energy Converter for Power Harvesting in Autonomous Microsystems , 2005, IEEE Transactions on Instrumentation and Measurement.

[25]  José Luis González,et al.  Human Powered Piezoelectric Batteries to Supply Power to Wearable Electronic Devices , 2002 .

[26]  T. S. Birch,et al.  Development of an electromagnetic micro-generator , 1997 .

[27]  Danni Wang,et al.  HOW THE NUMBER AND PLACEMENT OF SENSORS CONTROLLING ROOM AIR DISTRIBUTION SYSTEMS AFFECT ENERGY USE AND COMFORT , 2002 .

[28]  Yi-Chung Shu,et al.  Analysis of power output for piezoelectric energy harvesting systems , 2006 .

[29]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless remote power supply , 2002 .

[30]  Jan M. Rabaey,et al.  PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking , 2000, Computer.

[31]  Neil D. Sims,et al.  Magnetorheological landing gear: 1. A?design methodology , 2007 .

[32]  A. Pisano,et al.  Modeling and optimal design of piezoelectric cantilever microactuators , 1997 .

[33]  Siak Piang Lim,et al.  Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications , 2004 .

[34]  Rajeevan Amirtharajah,et al.  Self-powered signal processing using vibration-based power generation , 1998, IEEE J. Solid State Circuits.

[35]  Heath Hofmann,et al.  Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode , 2003 .

[36]  S. Beeby,et al.  A novel thick-film piezoelectric micro-generator , 2001 .

[37]  R. B. Yates,et al.  Development of an electromagnetic micro-generator , 2001 .

[38]  Ho-Jun Lee,et al.  The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates , 1997 .

[39]  A. Chandrakasan,et al.  A micropower programmable DSP powered using a MEMS-based vibration-to-electric energy converter , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[40]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[41]  Vlad C. Coroama,et al.  Disappearing Computers Everywhere Living in a World of Smart Everyday Objects , 2003 .

[42]  J.G. Smits,et al.  The constituent equations of piezoelectric heterogeneous bimorphs , 1991, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[43]  Song-Yul Choe,et al.  The Optimal Design and Analysis of Piezoelectric Cantilever Beams for Power Generation Devices , 2005 .