Cumulative fatigue damage mechanisms and quantifying parameters : A literature review

Cumulative fatigue damage analysis plays an important role in fatigue life prediction of components and structures which are subjected to field loading histories. Understanding of cumulative damage mechanisms is essential since it provides the necessary physical bases for modeling the cumulative damage process. A damage measure that can reflect and quantify the real damage state the material undergoes is also a key issue for successful modeling of cumulative fatigue damage. This review paper provides a comprehensive overview of research activities highlighting the recent findings and progress on phenomenological observations and mechanisms, as well as quantification measures of cumulative fatigue damage. Depending on the definition of failure or the characteristics of failure experienced in a material, the effectiveness of a damage parameter could vary from case to case. Many damage parameters have been proposed and many of them are in use. Those to be reviewed are sorted into categories of metallurgical parameters, surface crack quantifications, mechanical measures, and physical parameters. Early studies on cumulative damage mechanisms and quantifying measures are reviewed only briefly, since they have been covered in the existing literature.

[1]  F. T. S. Yu,et al.  A Dynamic Optical Correlation Technique For Fatigue Failure Prediction , 1977 .

[2]  R. Ratcliffe,et al.  The measurement of small density changes in solids , 1965 .

[3]  I. R. Kramer A mechanism of fatigue failure , 1974 .

[4]  Shi Mingzhe,et al.  Measuring the damage factor of materials with the thin-walled cylinder torsion test and the low-cycle fatigue test , 1993 .

[5]  H. S. Fong,et al.  Fatigue damage and crack nucleation mechanisms at intermediate strain amplitudes , 1990 .

[6]  R. R. Gatts Application of a Cumulative Damage Concept to Fatigue , 1961 .

[7]  Robert E. Green,et al.  Ultrasonic and Acoustic Emission Detection of Fatigue Damage. , 1980 .

[8]  Tim Topper,et al.  The effect of compressive underloads and tensile overloads on fatigue damage accumulation in SAE 1045 steel , 1990 .

[9]  W. L. Haworth,et al.  Fatigue Damage Detection in 2024-T3 Aluminum, Titanium, and Low Carbon Steel by Optical Correlation , 1977 .

[10]  R. E. Green,et al.  Simultaneous monitoring of acoustic emission and ultrasonic attenuation during fatigue of 7075 aluminium , 1979 .

[11]  A. Bazergui,et al.  Cumulative Fatigue Damage Under Stress-Controlled Conditions , 1971 .

[12]  Ic Moore,et al.  Cyclic Stress, Strain, and Energy Variations under Cumulative Damage Tests in Low-Cycle Fatigue , 1973 .

[13]  W. E. Mayo,et al.  Microscopic-damage based criterion for fatigue failure prediction , 1987 .

[14]  T. Bui-Quoc,et al.  EFFECT OF PREVIOUS CYCLIC LOADING ON YIELD AND TENSILE STRENGTHS OF A MILD STEEL , 1988 .

[15]  B. Budiansky,et al.  Elastic moduli of a cracked solid , 1976 .

[16]  Sun Ig Hong,et al.  Transient cyclic stress-strain response and cumulative damage in Cu-16at.% A1 single crystals fatigued under variable straining , 1990 .

[17]  X. Niu,et al.  MEMORY BEHAVIOR OF STRESS AMPLITUDE RESPONSES AND FATIGUE DAMAGE MODEL OF A HOT-ROLLED LOW CARBON STEEL , 1988 .

[18]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[19]  V. M. Radhakrishnan,et al.  Cumulative damage in low-cycle fatigue , 1978 .

[20]  Sun Ig Hong,et al.  Mechanisms of slip mode modification in F.C.C. solid solutions , 1990 .

[21]  Fernand Ellyin,et al.  Generalization of cumulative damage criterion to multilevel cyclic loading , 1987 .

[22]  Darrell F. Socie Fatigue damage mapping , 1988 .

[23]  M. R. Pranesh,et al.  Damage curve approach in fatigue using acoustic emission technique , 1989 .

[24]  T. Magnin,et al.  A quantitative approach to fatigue damage evolution in FCC and BCC stainless steels , 1985 .

[25]  Cheng Yuan-sheng,et al.  Measurement of continuous damage parameter , 1988 .

[26]  J. Polák,et al.  NUCLEATION AND SHORT CRACK GROWTH IN FATIGUED POLYCRYSTALLINE COPPER , 1990 .

[27]  Jean Lemaitre,et al.  Application of Damage Concepts to Predict Creep-Fatigue Failures , 1979 .

[28]  Darrell F. Socie,et al.  Fatigue damage accumulation in grey cast iron , 1987 .

[29]  V. V. Filinov,et al.  Evaluation of the level of fatigue damage cumulation in the surface layer of high-strength steels , 1987 .

[30]  Tiejun Wang,et al.  A continuum damage model for weld heat affected zone under low cycle fatigue loading , 1990 .

[31]  Volker Weiss,et al.  Low Cycle Fatigue Damage in Pressure-Vessel Materials , 1963 .

[32]  Changchun Li,et al.  The fatigue damage criterion and evolution equation containing material microparameters , 1989 .

[33]  V. Kliman,et al.  Fatigue life prediction for a material under programmable loading using the cyclic stress-strain properties , 1984 .

[34]  Yuan-Sheng Cheng A review on the law of continuous damage parameter for non-ageing materials , 1983 .

[35]  L. Cordero,et al.  A cumulative fatigue damage formulation for persistent slip band type materials , 1988 .

[36]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[37]  Shuji Taira,et al.  X-ray-diffraction approach for studies on fatigue and creep , 1973 .

[38]  Alan Plumtree,et al.  Damage accumulation and fatigue crack propagation in a squeeze-formed aluminium alloy , 1989 .

[39]  N. Laws,et al.  The effect of micro-crack systems on the loss of stiffness of brittle solids , 1987 .

[40]  K. Ohji,et al.  Cumulative Damage and Effect of Mean Strain in Low-Cycle Fatigue of a 2024-T351 Aluminum Alloy , 1966 .

[41]  Darrell F. Socie,et al.  FATIGUE DAMAGE IN 1045 STEEL UNDER CONSTANT AMPLITUDE BIAXIAL LOADING , 1984 .

[42]  Stefan Piechnik,et al.  Law of continuous damage parameter for non-ageing materials , 1979 .

[43]  M. N. Bassim,et al.  Study of the effect of heat treatment on low cycle fatigue in AISI 4340 steel by acoustic emission , 1983 .

[44]  Alan Plumtree,et al.  HIGH TEMPERATURE FATIGUE DAMAGE IN THREE AUSTENITIC ALLOYS , 1988 .

[45]  J. Polák,et al.  LOW CYCLE FATIGUE DAMAGE ACCUMULATION IN ARMCO-IRON , 1991 .

[46]  Cheng Yuan-sheng Determination of expression of continuous damage parameter for non-ageing materials under constant tensile load , 1986 .

[47]  Brian N. Leis,et al.  An Energy-Based Fatigue and Creep-Fatigue Damage Parameter , 1977 .

[48]  M. N. Bassim,et al.  Acoustic emission during the low cycle fatigue of AISI 4340 steel , 1984 .

[49]  Doris Kuhlmann-Wilsdorf,et al.  Improved Method for the Experimental Determination of Smallest Density Changes , 1963 .