Description and basic evaluation of Beijing Normal University Earth System Model (BNU-ESM) version 1

Abstract. An earth system model has been developed at Beijing Normal University (Beijing Normal University Earth System Model, BNU-ESM); the model is based on several widely evaluated climate model components and is used to study mechanisms of ocean-atmosphere interactions, natural climate variability and carbon-climate feedbacks at interannual to interdecadal time scales. In this paper, the model structure and individual components are described briefly. Further, results for the CMIP5 (Coupled Model Intercomparison Project phase 5) pre-industrial control and historical simulations are presented to demonstrate the model's performance in terms of the mean model state and the internal variability. It is illustrated that BNU-ESM can simulate many observed features of the earth climate system, such as the climatological annual cycle of surface-air temperature and precipitation, annual cycle of tropical Pacific sea surface temperature (SST), the overall patterns and positions of cells in global ocean meridional overturning circulation. For example, the El Nino-Southern Oscillation (ENSO) simulated in BNU-ESM exhibits an irregular oscillation between 2 and 5 years with the seasonal phase locking feature of ENSO. Important biases with regard to observations are presented and discussed, including warm SST discrepancies in the major upwelling regions, an equatorward drift of midlatitude westerly wind bands, and tropical precipitation bias over the ocean that is related to the double Intertropical Convergence Zone (ITCZ).

[1]  J. Lifland Earth's Climate:The Ocean‐Atmosphere Interaction , 2004 .

[2]  Duane E. Waliser,et al.  Intraseasonal Variability in the Atmosphere-Ocean Climate System , 2005 .

[3]  M. England,et al.  Projected Changes to the Southern Hemisphere Ocean and Sea Ice in the IPCC AR4 Climate Models , 2009 .

[4]  G. Madec,et al.  A Modeling Study of the Impact of Tropical Instability Waves on the Heat Budget of the Eastern Equatorial Pacific , 2006 .

[5]  Ross J. Murray,et al.  Explicit Generation of Orthogonal Grids for Ocean Models , 1996 .

[6]  A. Wittenberg,et al.  Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM , 2007 .

[7]  Yayoi Harada,et al.  The Japanese 55-year Reanalysis "JRA-55": An Interim Report , 2011 .

[8]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[9]  O. Boucher,et al.  Arctic sea ice and atmospheric circulation under the GeoMIP G1 scenario , 2014 .

[10]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[11]  R. Wu,et al.  Regimes of seasonal air–sea interaction and implications for performance of forced simulations , 2007 .

[12]  N. McFarlane,et al.  Role of convective scale momentum transport in climate simulation , 1995 .

[13]  M. Heimann,et al.  The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate-human interactions , 2004 .

[14]  Charles S. Zender,et al.  A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate , 2003 .

[15]  Frank O. Bryan,et al.  Equatorial Circulation of a Global Ocean Climate Model with Anisotropic Horizontal Viscosity , 2001 .

[16]  D. Lawrence,et al.  The CCSM4 Land Simulation, 1850-2005: Assessment of Surface Climate and New Capabilities , 2012 .

[17]  Xue-Jie Gao,et al.  Developed and developing world responsibilities for historical climate change and CO2 mitigation , 2012, Proceedings of the National Academy of Sciences.

[18]  J. Picaut,et al.  Understanding Enso Physics—A Review , 2013 .

[19]  J. Lean,et al.  Modeling the Sun’s Magnetic Field and Irradiance since 1713 , 2005 .

[20]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[21]  Bruce R. Barkstrom,et al.  The Earth Radiation Budget Experiment (ERBE). , 1984 .

[22]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[23]  A. Dai,et al.  Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000 , 2010 .

[24]  Tim Li,et al.  Interannual and Interdecadal Variations of the East Asian Summer Monsoon and Tropical Pacific SSTs. Part I: Roles of the Subtropical Ridge , 2000 .

[25]  K. Speer,et al.  Global Ocean Meridional Overturning , 2007 .

[26]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[27]  W. G. Strand,et al.  Parallel climate model (PCM) control and transient simulations , 2000 .

[28]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[29]  Kenneth R. Sperber,et al.  Regional Heat Sources and the Active and Break Phases of Boreal Summer Intraseasonal (30–50 Day) Variability* , 2005 .

[30]  Richard Neale,et al.  Application of MJO Simulation Diagnostics to Climate Models , 2009 .

[31]  P. Cox,et al.  Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models , 2013 .

[32]  R. Murtugudde,et al.  Effect of ocean mesoscale variability on the mean state of tropical Atlantic climate , 2006 .

[33]  R. Neale,et al.  Improvements in a half degree atmosphere/land version of the CCSM , 2010 .

[34]  F. Jin,et al.  A coupled‐stability index for ENSO , 2006 .

[35]  Elizabeth C. Kent,et al.  New Insights into the Ocean Heat Budget Closure Problem from Analysis of the SOC Air–Sea Flux Climatology , 1999 .

[36]  L. Donner,et al.  The Frequency of Extreme Rain Events in Satellite Rain-Rate Estimates and an Atmospheric General Circulation Model , 2007 .

[37]  Daehyun Kim,et al.  Simplified metrics for the identification of the Madden–Julian oscillation in models , 2012 .

[38]  Yongqiang Yu,et al.  2 Cloud and Water Vapor Feedbacks to the El Niño 3 Warming : Are They Still Biased in CMIP 5 Models ? , 2013 .

[39]  Thomas M. Smith,et al.  An Improved In Situ and Satellite SST Analysis for Climate , 2002 .

[40]  M. Brandon,et al.  Transport and variability of the Antarctic Circumpolar Current in Drake Passage , 2003 .

[41]  R. Dickinson,et al.  A 3D Canopy Radiative Transfer Model for Global Climate Modeling: Description, Validation, and Application , 2014 .

[42]  I. Prentice,et al.  Terrestrial nitrogen cycle simulation with a dynamic global vegetation model , 2008 .

[43]  K. Trenberth,et al.  Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data , 2007 .

[44]  D. Wuebbles,et al.  Assessing General Circulation Model Simulations of Atmospheric Teleconnection Patterns , 2009 .

[45]  Bin Wang,et al.  Intraseasonal Variability , 2004 .

[46]  Philip J. Rasch,et al.  Effects of Convective Momentum Transport on the Atmospheric Circulation in the Community Atmosphere Model, Version 3 , 2008 .

[47]  R. Wu,et al.  Precipitation-surface temperature relationship in the IPCC CMIP5 models , 2013, Advances in Atmospheric Sciences.

[48]  Jean-Luc Redelsperger,et al.  The Present and Future of the West African Monsoon: A Process-Oriented Assessment of CMIP5 Simulations along the AMMA Transect , 2013 .

[49]  F. Wentz A well‐calibrated ocean algorithm for special sensor microwave / imager , 1997 .

[50]  S. Xie,et al.  Tropical Biases in CMIP5 Multimodel Ensemble: The Excessive Equatorial Pacific Cold Tongue and Double ITCZ Problems* , 2014 .

[51]  Klaus M. Weickmann,et al.  Intraseasonal (30–60 Day) Fluctuations of Outgoing Longwave Radiation and 250 mb Streamfunction during Northern Winter , 1985 .

[52]  C. Gautier,et al.  Shortwave feedbacks and El Niño‐Southern Oscillation: Forced ocean and coupled ocean‐atmosphere experiments , 1994 .

[53]  R. Dickinson,et al.  A 3 D Canopy Radiative Transfer Model for Global Climate Modeling : Description , Validation , and Application , 2014 .

[54]  Ann Henderson-Sellers,et al.  Biosphere-atmosphere transfer scheme(BATS) version 1e as coupled to the NCAR community climate model , 1993 .

[55]  Paul W. Stackhouse,et al.  Impact of clouds on atmospheric heating based on the R04 CloudSat fluxes and heating rates data set , 2008 .

[56]  R. Dickinson,et al.  The Common Land Model , 2003 .

[57]  Robert Pincus,et al.  Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their Corresponding Instrument Simulators , 2012 .

[58]  J. Canadell,et al.  Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems , 2001, Nature.

[59]  Martin Wahlen,et al.  Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño , 2011, Nature.

[60]  B. Barkstrom,et al.  Cloud-Radiative Forcing and Climate: Results from the Earth Radiation Budget Experiment , 1989, Science.

[61]  Jonathan M. Gregory,et al.  Impact of an Eddy-Permitting Ocean Resolution on Control and Climate Change Simulations with a Global Coupled GCM. , 2004 .

[62]  A. Busalacchi,et al.  Rectified effects of tropical instability wave (TIW)‐induced atmospheric wind feedback in the tropical Pacific , 2008 .

[63]  Akihiko Ito,et al.  A historical meta‐analysis of global terrestrial net primary productivity: are estimates converging? , 2011 .

[64]  Frank J. Wentz,et al.  SSM/I Version-7 Calibration Report , 2012 .

[65]  H. Dijkstra,et al.  Ocean-atmosphere interaction and the tropical climatology. Part I. The dangers of flux correction , 1995 .

[66]  D. Subrahmanyam,et al.  The 30–50 Day Mode at 850 mb During MONEX , 1982 .

[67]  F. Zwiers,et al.  Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate , 2013 .

[68]  Veronika Eyring,et al.  Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2013 .

[69]  S. Bony,et al.  On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates , 2013, Climate Dynamics.

[70]  Bin Wang,et al.  Anticorrelated intensity change of the quasi‐biweekly and 30–50‐day oscillations over the South China Sea , 2008 .

[71]  T. N. Krishnamurti,et al.  The status of the tropical rainfall measuring mission (TRMM) after two years in orbit , 2000 .

[72]  Shingo Watanabe,et al.  Arctic sea ice and atmospheric circulation under the GeoMIP G 1 scenario , 2014 .

[73]  R. Horton,et al.  Reducing spread in climate model projections of a September ice-free Arctic , 2013, Proceedings of the National Academy of Sciences.

[74]  R. Neale,et al.  The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events , 2008 .

[75]  Daehyun Kim,et al.  MJO and Convectively Coupled Equatorial Waves Simulated by CMIP5 Climate Models , 2013 .

[76]  R. Murtugudde,et al.  Nitrogen uptake and regeneration pathways in the equatorial Pacific: a basin scale modeling study , 2009 .

[77]  Robert E. Dickinson,et al.  A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance , 2004 .

[78]  Global Soil Data Task,et al.  Global Gridded Surfaces of Selected Soil Characteristics (IGBP-DIS) , 2000 .

[79]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[80]  J. Susskind,et al.  Global Precipitation at One-Degree Daily Resolution from Multisatellite Observations , 2001 .

[81]  Maosheng Zhao,et al.  Improvements of the MODIS terrestrial gross and net primary production global data set , 2005 .

[82]  R. B. Jackson,et al.  THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION , 2000 .

[83]  N. Bond,et al.  North Pacific Decadal Variability and Climate Change in the IPCC AR4 Models , 2011 .

[84]  J. Canadell,et al.  Soil organic carbon pools in the northern circumpolar permafrost region , 2009 .

[85]  S. Bony,et al.  On the Correspondence between Mean Forecast Errors and Climate Errors in CMIP5 Models , 2013 .

[86]  K. Trenberth,et al.  Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans , 2010 .

[87]  A. Arneth,et al.  Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations , 2011 .

[88]  P. R. Julian,et al.  Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period , 1972 .

[89]  G. Bonan The Land Surface Climatology of the NCAR Land Surface Model Coupled to the NCAR Community Climate Model , 1998 .

[90]  J. Marotzke,et al.  Monitoring the Atlantic meridional overturning circulation , 2011 .

[91]  J. Wallace,et al.  ENSO-like Interdecadal Variability: 1900–93 , 1997 .

[92]  M. Behrenfeld,et al.  Spatial and temporal variations in dissolved and particulate organic nitrogen in the equatorial Pacific: biological and physical influences , 2008 .

[93]  Klaus M. Weickmann,et al.  Circulation anomalies associated with tropical convection during northern winter , 1992 .

[94]  R. Murtugudde,et al.  Temperature Advection by Tropical Instability Waves , 2006 .

[95]  J. Lloyd,et al.  On the temperature dependence of soil respiration , 1994 .

[96]  D. Menemenlis,et al.  On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations , 2010 .

[97]  F. Doblas-Reyes,et al.  An Evaluation Metric for Intraseasonal Variability and its Application to CMIP3 Twentieth-Century Simulations , 2010 .

[98]  E. Guilyardi,et al.  Atmosphere Feedbacks during ENSO in a Coupled GCM with a Modified Atmospheric Convection Scheme , 2009 .

[99]  Markus Reichstein,et al.  Improving canopy processes in the Community Land Model version 4 (CLM4) using global flux fields empirically inferred from FLUXNET data , 2011 .

[100]  R. Neale,et al.  The Mean Climate of the Community Atmosphere Model (CAM4) in Forced SST and Fully Coupled Experiments , 2013 .

[101]  E. O. Hulburt,et al.  SORCE CONTRIBUTIONS TO NEW UNDERSTANDING OF GLOBAL CHANGE AND SOLAR VARIABILITY , 2005 .

[102]  Frank J. Wentz,et al.  A Well Calibrated Ocean Algorithm for SSM/I , 1999 .

[103]  A. Blyth,et al.  Extension of the Stochastic Mixing Model to Cumulonimbus Clouds , 1992 .

[104]  E. Schneider Understanding Differences between the Equatorial Pacific as Simulated by Two Coupled GCMs , 2002 .

[105]  V. Ramaswamy,et al.  The Radiative Signature of Upper Tropospheric Moistening , 2005, Science.

[106]  S. Levitus,et al.  Interannual Variability of the Coupled Tropical Pacific Ocean-Atmosphere System Associated with the El Niño-Southern Oscillation. , 1997 .

[107]  A. Blyth,et al.  A Stochastic Mixing Model for Nonprecipitating Cumulus Clouds , 1986 .

[108]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[109]  Matthew C. Wheeler,et al.  Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain , 1999 .

[110]  Kiran Salunke,et al.  Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs , 2013 .

[111]  Mingquan Mu,et al.  Simulation of the Madden–Julian Oscillation in the NCAR CCM3 Using a Revised Zhang–McFarlane Convection Parameterization Scheme , 2005 .

[112]  N. Gillett,et al.  Annular mode changes in the CMIP5 simulations , 2013 .

[113]  S. Xie,et al.  Tropical Biases in CMIP5 Multimodel Ensemble: The Excessive Equatorial Pacific Cold Tongue and Double ITCZ Problems* , 2014 .

[114]  E. Boss,et al.  Regulation of phytoplankton carbon to chlorophyll ratio by light, nutrients and temperature in the Equatorial Pacific Ocean: a basin-scale model , 2008 .

[115]  E. Maloney,et al.  Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models , 2006 .

[116]  G. Zhang Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization , 2002 .

[117]  Jiang Zhu,et al.  A successful real-time forecast of the 2010–11 La Niña event , 2013, Scientific Reports.

[118]  B. Bonan,et al.  A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User's Guide , 1996 .

[119]  Eric J. Fetzer,et al.  Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology , 2013 .

[120]  Charles Doutriaux,et al.  Performance metrics for climate models , 2008 .

[121]  F. Woodward,et al.  Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate , 2010, Science.

[122]  Yongqiang Yu,et al.  Tropical Water Vapor and Cloud Feedbacks in Climate Models: A Further Assessment Using Coupled Simulations , 2009 .

[123]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[124]  K. Lau,et al.  Aspects of the 40 50 Day Oscillation during the Northern Summer as Inferred from Outgoing Longwave Radiation , 1985 .

[125]  Tony Phillips,et al.  Assessment of surface winds over the Atlantic, Indian, and Pacific Ocean sectors of the Southern Ocean in CMIP5 models: historical bias, forcing response, and state dependence , 2013 .

[126]  Philip J. Rasch,et al.  Tropical Intraseasonal Variability in 14 IPCC AR4 Climate Models. Part I: Convective Signals , 2006 .

[127]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[128]  W. Rossow,et al.  The International Satellite Cloud Climatology Project (ISCCP) Web Site An Online Resource for Research , 2004 .

[129]  X. Fettweis,et al.  Brief communication "Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland ice sheet" , 2012 .

[130]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[131]  P. R. Julian,et al.  Detection of a 40–50 Day Oscillation in the Zonal Wind in the Tropical Pacific , 1971 .

[132]  C. Deser,et al.  The Transient Atmospheric Circulation Response to North Atlantic SST and Sea Ice Anomalies , 2007 .

[133]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[134]  G. Zhang,et al.  Effects of modifications to the Zhang-McFarlane convection parameterization on the simulation of the tropical precipitation in the National Center for Atmospheric Research Community Climate Model, version 3 , 2005 .

[135]  Gregory C. Johnson,et al.  Circulation, mixing, and production of Antarctic Bottom Water , 1999 .

[136]  Andrew T. Wittenberg,et al.  GFDL's CM2 Global Coupled Climate Models. Part III: Tropical Pacific Climate and ENSO , 2006 .

[137]  K. Taylor,et al.  The Geoengineering Model Intercomparison Project (GeoMIP) , 2011 .

[138]  Veronika Eyring,et al.  A Summary of the CMIP5 Experiment Design , 2010 .

[139]  Jialin Lin,et al.  The Double-ITCZ Problem in IPCC AR4 Coupled GCMs: Ocean–Atmosphere Feedback Analysis , 2007 .

[140]  Robert Benjamin Lee,et al.  Earth Radiation Budget Experiment , 1990 .

[141]  A. Mecherikunnel,et al.  The Earth Radiation Budget Experiment , 1988 .

[142]  Zhaomin Wang,et al.  Representation of the Antarctic Circumpolar Current in the CMIP5 climate models and future changes under warming scenarios , 2012 .

[143]  A. Kirkevåg,et al.  The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate , 2013 .

[144]  E. Guilyardi,et al.  ENSO representation in climate models: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[145]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[146]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[147]  P. Thornton,et al.  Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model , 2005 .

[148]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[149]  James J. Simpson,et al.  The NVAP global water vapor data set: independent cross-comparison and multiyear variability , 2001 .

[150]  J. Bjerknes ATMOSPHERIC TELECONNECTIONS FROM THE EQUATORIAL PACIFIC1 , 1969 .

[151]  J. Randerson,et al.  Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations , 2012 .

[152]  Amy H. Butler,et al.  On the lack of stratospheric dynamical variability in low‐top versions of the CMIP5 models , 2013 .

[153]  Zeng Qingcun,et al.  A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments , 1997 .

[154]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .

[155]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[156]  Lanning Wang,et al.  Description and basic evaluation of BNU-ESM version 1 , 2014 .

[157]  Eric Guilyardi,et al.  Representing El Niño in Coupled Ocean–Atmosphere GCMs: The Dominant Role of the Atmospheric Component , 2004 .

[158]  Peter K. Taylor,et al.  Intercomparison and validation of ocean–atmosphere energy flux fields. Final report of the Joint WCRP/SCOR Working Group on Air–Sea Fluxes (SCOR Working Group 110) , 2000 .

[159]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[160]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .