Random channel coding and blind deconvolution
暂无分享,去创建一个
[1] Shiqian Ma,et al. Fixed point and Bregman iterative methods for matrix rank minimization , 2009, Math. Program..
[2] J. Romberg,et al. Sparse channel separation using random probes , 2010, 1002.4222.
[3] Volkan Cevher,et al. Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.
[4] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[5] Justin K. Romberg,et al. Channel protection: Random coding meets sparse channels , 2009, 2009 IEEE Information Theory Workshop.
[6] Babak Hassibi,et al. On the Reconstruction of Block-Sparse Signals With an Optimal Number of Measurements , 2008, IEEE Transactions on Signal Processing.
[7] Emmanuel J. Candès,et al. Highly Robust Error Correction byConvex Programming , 2006, IEEE Transactions on Information Theory.
[8] Emmanuel J. Candès,et al. Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.
[9] E. Candès,et al. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.
[10] David L Donoho,et al. Compressed sensing , 2006, IEEE Transactions on Information Theory.
[11] E. Candès,et al. Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.
[12] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[13] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[14] Tony F. Chan,et al. Total variation blind deconvolution , 1998, IEEE Trans. Image Process..
[15] Hui Liu,et al. Recent developments in blind channel equalization: From cyclostationarity to subspaces , 1996, Signal Process..
[16] Lang Tong,et al. Blind identification and equalization based on second-order statistics: a time domain approach , 1994, IEEE Trans. Inf. Theory.
[17] M. Bellanger. Adaptive filter theory: by Simon Haykin, McMaster University, Hamilton, Ontario L8S 4LB, Canada, in: Prentice-Hall Information and System Sciences Series, published by Prentice-Hall, Englewood Cliffs, NJ 07632, U.S.A., 1986, xvii+590 pp., ISBN 0-13-004052-5 025 , 1987 .
[18] S. Haykin,et al. Adaptive Filter Theory , 1986 .
[19] G. Golub. Matrix computations , 1983 .