Stochastic modelling and analysis of 802.11 DCF with heterogeneous non-saturated nodes

In this paper we present a queueing model for a 802.11 wireless LAN under non-saturated conditions. Our model builds on previous work, but additionally takes into account heterogeneous arrival rates. In particular, we consider the case when there are two packet arrival rates in the network, with one set of stations generating packets at the lower rate and the rest generating packets at the higher rate.

[1]  Marco Conti,et al.  Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit , 2000, TNET.

[2]  Dimitri P. Bertsekas,et al.  Data Networks , 1986 .

[3]  Tapani Lehtonen On the optimal policies of an exponential machine repair problem , 1984 .

[4]  S. Wittevrongel,et al.  Queueing Systems , 2019, Introduction to Stochastic Processes and Simulation.

[5]  Roberto Battiti,et al.  Analysis of the IEEE 802.11 DCF with Service Differentiation Support in Non-saturation Conditions , 2004, QofIS.

[6]  G. F. Newell,et al.  Introduction to the Theory of Queues. , 1963 .

[7]  Periklis Chatzimisios,et al.  IEEE 802.11 packet delay-a finite retry limit analysis , 2003, GLOBECOM '03. IEEE Global Telecommunications Conference (IEEE Cat. No.03CH37489).

[8]  P. Naor On Machine Interference , 1956 .

[9]  David Malone,et al.  Modeling the 802.11 distributed coordination function in non-saturated conditions , 2005, IEEE Communications Letters.

[10]  Roberto Battiti,et al.  Performance Analysis of an Enhanced IEEE 802.11 Distributed Coordination Function Supporting Service Differentiation , 2003, QofIS.

[11]  Erik M. M. Winands,et al.  A finite-source feedback queueing network as a model for the IEEE 802.11 distributed coordination function , 2003 .

[12]  Donald Gross,et al.  The Machine Repair Problem with Heterogeneous Populations , 1981, Oper. Res..

[13]  J. Sztrik On the finite-source G/M/r queue , 1985 .

[14]  Hisao Kameda A Finite-Source Queue with Different Customers , 1982, JACM.

[15]  Biplab Sikdar,et al.  Queueing analysis and delay mitigation in IEEE 802.11 random access MAC based wireless networks , 2004, IEEE INFOCOM 2004.

[16]  Roberto Battiti,et al.  Achieving Maximum Throughput and Service Differentiation by Enhancing the IEEE 802.11 MAC Protocol , 2004, WONS.

[17]  Prathima Agrawal,et al.  Towards the performance analysis of IEEE 802.11 in multi-hop ad-hoc networks , 2005, IEEE Wireless Communications and Networking Conference, 2005.

[18]  Ken R. Duffy,et al.  Modeling the Impact of Buffering on 802.11 , 2007, IEEE Communications Letters.

[19]  Moshe Zukerman,et al.  Performance Analysis of the IEEE 802.11 MAC Protocol , 2007 .

[20]  Dee Denteneer,et al.  A finite-source queuing model for the IEEE 802.11 DCF , 2005, Eur. Trans. Telecommun..

[21]  Lajos Takács,et al.  Priority queues , 2019, The Art of Multiprocessor Programming.

[22]  J. J. Garcia-Luna-Aceves,et al.  Delay analysis of IEEE 802.11 in single-hop networks , 2003, 11th IEEE International Conference on Network Protocols, 2003. Proceedings..

[23]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[24]  D. Malone,et al.  Modeling the 802.11 Distributed Coordination Function in Nonsaturated Heterogeneous Conditions , 2007, IEEE/ACM Transactions on Networking.

[25]  Thierry Turletti,et al.  Performance analysis under finite load and improvements for multirate 802.11 , 2005, Comput. Commun..

[26]  Pravin Varaiya,et al.  Throughput Analysis and Admission Control for IEEE 802.11a , 2005, Mob. Networks Appl..

[27]  R. R. P. Jackson,et al.  Introduction to the Theory of Queues , 1963 .