On multiple solutions for a fourth order nonlinear singular boundary value problems arising in epitaxial growth theory

[1]  Luis Casasús,et al.  The decomposition method for stiff systems of ordinary differential equations , 2005, Appl. Math. Comput..

[2]  Jafar Biazar,et al.  Solution of the system of ordinary differential equations by Adomian decomposition method , 2004, Appl. Math. Comput..

[3]  Mohammad Mahdi Hosseini,et al.  On the convergence of Adomian decomposition method , 2006, Appl. Math. Comput..

[4]  John R. Arthur Molecular beam epitaxy , 2002 .

[5]  Asghar Ghorbani,et al.  Beyond Adomian polynomials: He polynomials , 2009 .

[6]  Waleed Al-Hayani,et al.  Adomian decomposition method with Green's function for sixth-order boundary value problems , 2011, Comput. Math. Appl..

[7]  R. Agarwal,et al.  A Review on a Class of Second Order Nonlinear Singular BVPs , 2020, Mathematics.

[8]  Y. Cherruault Convergence of Adomian's method , 1990 .

[9]  Mohammad Mahdi Hosseini Adomian decomposition method with Chebyshev polynomials , 2006, Appl. Math. Comput..

[10]  R. Agarwal,et al.  Existence and nonexistence results for a class of fourth‐order coupled singular boundary value problems arising in the theory of epitaxial growth , 2020 .

[11]  Sebastian Lourdudoss,et al.  Hydride vapor phase epitaxy revisited , 1997 .

[12]  Giuseppe Saccomandi,et al.  New results for convergence of Adomian's method applied to integral equations , 1992 .

[13]  C. Escudero,et al.  On radial stationary solutions to a model of non-equilibrium growth , 2013, European Journal of Applied Mathematics.

[14]  Existence and nonexistence results for a singular boundary value problem arising in the theory of epitaxial growth , 2013, 1309.5659.

[15]  I. Hashim Adomian decomposition method for solving BVPs for fourth-order integro-differential equations , 2006 .

[16]  C. Escudero Geometric principles of surface growth. , 2008, Physical review letters.

[17]  A. Barabasi,et al.  Fractal Concepts in Surface Growth: Frontmatter , 1995 .

[18]  C. Escudero,et al.  Some fourth order nonlinear elliptic problems related to epitaxial growth , 2013, 1309.5656.

[19]  Bernard S. Meyerson,et al.  UHV/CVD growth of Si and Si: Ge alloys: chemistry, physics, and device applications , 1992, Proc. IEEE.

[20]  C. Escudero,et al.  Origins of scaling relations in nonequilibrium growth , 2010, 1004.2725.

[21]  Jafar Biazar,et al.  On the order of convergence of Adomian method , 2002, Appl. Math. Comput..

[22]  Amit Kumar Verma,et al.  Existence and nonexistence results of radial solutions to singular BVPs arising in epitaxial growth theory , 2019, ArXiv.

[23]  Y. Cherruault,et al.  New ideas for proving convergence of decomposition methods , 1995 .

[24]  Lai,et al.  Kinetic growth with surface relaxation: Continuum versus atomistic models. , 1991, Physical review letters.

[25]  Y. Cherruault,et al.  Decomposition methods: A new proof of convergence , 1993 .

[26]  Amit Kumar Verma,et al.  Numerical solutions for a class of singular boundary value problems arising in the theory of epitaxial growth , 2019, ArXiv.

[27]  G. Adomian A review of the decomposition method and some recent results for nonlinear equations , 1990 .

[28]  Luis Casasús,et al.  Approximate analytical solution of fourth order boundary value problems , 2005, Numerical Algorithms.

[29]  Zhang,et al.  Dynamic scaling of growing interfaces. , 1986, Physical review letters.

[30]  Ramesh Chand Mittal,et al.  Solution of a class of singular boundary value problems , 2008, Numerical Algorithms.

[31]  Zhengyi Lu,et al.  Analytical solution of the linear fractional differential equation by Adomian decomposition method , 2008 .