An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures
暂无分享,去创建一个
[1] R. Hoppe,et al. Residual based a posteriori error estimators for eddy current computation , 2000 .
[2] L. R. Scott,et al. Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .
[3] Ricardo H. Nochetto,et al. Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..
[4] Zhiming Chen,et al. An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems , 2007, Math. Comput..
[5] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[6] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[7] Zhiming Chen,et al. On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2002, SIAM J. Sci. Comput..
[8] J. Bérenger. Three-Dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves , 1996 .
[9] F. Hu. Absorbing Boundary Conditions , 2004 .
[10] Joseph E. Pasciak,et al. Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem , 2008, Math. Comput..
[11] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[12] David C. Dobson,et al. On the scattering by a biperiodic structure , 2000 .
[13] GANG BAO,et al. Variational Approximation of Maxwell's Equations in Biperiodic Structures , 1997, SIAM J. Appl. Math..
[14] Lifeng Li,et al. New formulation of the Fourier modal method for crossed surface-relief gratings , 1997 .
[15] Avner Friedman,et al. The time-harmonic maxwell equations in a doubly periodic structure , 1992 .
[16] S. Gedney. An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .
[17] Yia-Chung Chang,et al. Efficient finite-element, Green's function approach for critical-dimension metrology of three-dimensional gratings on multilayer films. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.
[18] A. Aziz. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations , 1972 .
[19] Peter Schlattmann,et al. Theory and Algorithms , 2009 .
[20] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[21] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..
[22] Douglas N. Arnold,et al. Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..
[23] T. Abboud. Formulation variationnelle des équations de Maxwell dans un réseau bipériodique de R3 , 1993 .
[24] H. Triebel,et al. Topics in Fourier Analysis and Function Spaces , 1987 .
[25] Gang Bao,et al. Mathematical Modeling in Optical Science , 2001, Mathematical Modeling in Optical Science.
[26] P. Monk,et al. Optimizing the Perfectly Matched Layer , 1998 .
[27] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[28] Endre Süli,et al. The Adaptive Computation of Far-Field Patterns by A Posteriori Error Estimation of Linear Functionals , 1998 .
[29] Gang Bao,et al. Convergence Analysis of the Perfectly Matched Layer Problemsfor Time-Harmonic Maxwell's Equations , 2005, SIAM J. Numer. Anal..
[30] Antonio Guarnieri,et al. WITH THE COLLABORATION OF , 2009 .
[31] Gang Bao,et al. Analysis of finite dimensional approximations to a class of partial differential equations , 2004 .
[32] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[33] Zhimin Zhang,et al. Can We Have Superconvergent Gradient Recovery Under Adaptive Meshes? , 2007, SIAM J. Numer. Anal..
[34] R. E. Edwards,et al. Fourier series : a modern introduction , 1982 .
[35] Roger Petit,et al. Electromagnetic theory of gratings , 1980 .
[36] W. Rheinboldt,et al. Error Estimates for Adaptive Finite Element Computations , 1978 .
[37] Habib Ammari,et al. Low-Frequency Electromagnetic Scattering , 2000, SIAM J. Math. Anal..
[38] Zhiming Chen,et al. An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005 .
[39] Kiyotoshi Yasumoto,et al. Method of integral functionals for electromagnetic wave scattering from a double-periodic magnetodielectric layer. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.
[40] Matti Lassas,et al. On the existence and convergence of the solution of PML equations , 1998, Computing.
[41] M. Costabel,et al. Maxwell and Lamé eigenvalues on polyhedra , 1999 .
[42] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[43] Habib Ammari,et al. Maxwell's equations in periodic chiral structures , 2003 .
[44] Haijun Wu,et al. Adaptive finite-element method for diffraction gratings. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.
[45] Peter Monk,et al. A posteriori error indicators for Maxwell's equations , 1998 .
[46] J. Allen Cox,et al. Mathematical studies in rigorous grating theory , 1995 .
[47] Haijun Wu,et al. An Adaptive Finite Element Method with Perfectly Matched Absorbing Layers for the Wave Scattering by Periodic Structures , 2003, SIAM J. Numer. Anal..
[48] E. Turkel,et al. Absorbing PML boundary layers for wave-like equations , 1998 .
[49] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[50] W. Chew,et al. Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates , 1997 .
[51] Zhiming Chen,et al. An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems , 2005, SIAM J. Numer. Anal..
[52] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[53] Joseph E. Pasciak,et al. Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems , 2006, Math. Comput..