Learning the Structure of Probabilistic Graphical Models with an Extended Cascading Indian Buffet Process
暂无分享,去创建一个
Brahim Chaib-draa | Patrick Dallaire | Philippe Giguère | Patrick Dallaire | B. Chaib-draa | P. Giguère
[1] Thomas L. Griffiths,et al. A Non-Parametric Bayesian Method for Inferring Hidden Causes , 2006, UAI.
[2] Thomas L. Griffiths,et al. The Indian Buffet Process: An Introduction and Review , 2011, J. Mach. Learn. Res..
[3] J. Pitman. Exchangeable and partially exchangeable random partitions , 1995 .
[4] Jun S. Liu,et al. The Multiple-Try Method and Local Optimization in Metropolis Sampling , 2000 .
[5] D. W. Scott,et al. Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .
[6] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[7] Nir Friedman,et al. Being Bayesian about Network Structure , 2000, UAI.
[8] Fernando Pérez-Cruz,et al. Kullback-Leibler divergence estimation of continuous distributions , 2008, 2008 IEEE International Symposium on Information Theory.
[9] N. Hjort. Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .
[10] Michael I. Jordan. Hierarchical Models , Nested Models and Completely Random Measures , 2010 .
[11] A. Asuncion,et al. UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences , 2007 .
[12] P. Müller,et al. Approximatereference priors in the presence of latent structures , 2010 .
[13] J. N. R. Jeffers,et al. Graphical Models in Applied Multivariate Statistics. , 1990 .
[14] Michael I. Jordan,et al. Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.
[15] Lawrence Carin,et al. A Stick-Breaking Construction of the Beta Process , 2010, ICML.
[16] Lawrence Carin,et al. Nonparametric factor analysis with beta process priors , 2009, ICML '09.
[17] Catherine Blake,et al. UCI Repository of machine learning databases , 1998 .
[18] Etienne Barnard,et al. Maximum leave-one-out likelihood for kernel density estimation , 2010 .
[19] Nir Friedman,et al. Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks , 2004, Machine Learning.
[20] Ryan P. Adams,et al. Learning the Structure of Deep Sparse Graphical Models , 2009, AISTATS.
[21] David B. Dunson,et al. The Hierarchical Beta Process for Convolutional Factor Analysis and Deep Learning , 2011, ICML.
[22] Dilan Görür,et al. Dirichlet process Gaussian mixture models: choice of the base distribution , 2010 .
[23] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[24] Michael I. Jordan. Graphical Models , 2003 .
[25] Dipak K. Dey,et al. Frontiers of statistical decision making and Bayesian analysis : in honor of James O. Berger , 2010 .
[26] Jessika Weiss,et al. Graphical Models In Applied Multivariate Statistics , 2016 .
[27] Brendan J. Frey,et al. Continuous Sigmoidal Belief Networks Trained using Slice Sampling , 1996, NIPS.
[28] S. MacEachern,et al. Estimating mixture of dirichlet process models , 1998 .
[29] R. Fisher. THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .
[30] David W. Scott,et al. Multivariate Density Estimation: Theory, Practice, and Visualization , 1992, Wiley Series in Probability and Statistics.