Broadband and Robust Metalens with Nonlinear Phase Profiles for Efficient Terahertz Wave Control

Metasurfaces, 2D artificial electromagnetic media, open up a new frontier of functional device design ranging from radio waves to the visible region. Particularly, metasurface‐based lenses are indispensable in various practical terahertz applications. The authors aim at achieving flexible and robust metalenses for efficient terahertz wave control. In general, resolution and efficiency are two inevitable parameters in determining the focusing and imaging abilities of lenses, which however are rarely experimentally demonstrated in the terahertz band. In this Communication, three broadband and robust metalenses with nonlinear phase profiles are proposed, all of which are experimentally investigated by using near‐field scanning terahertz microscopy (NSTM) with a spatial resolution of 50 µm. The measurement shows that the metalens can focus a 0.95 THz wave to a spot size of 580 µm and achieve a transmittance efficiency of 45%. In addition, the NSTM system facilitates an experimental investigation of the incidence angle dependence of the terahertz metalens, which proves the robust focusing feature of the proposed device. This demonstration delivers a promising metasurface design for potential applications in imaging and information processing that may be of interest for the entire electromagnetic spectrum.

[1]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[2]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[3]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[4]  A. Rohrbach,et al.  Microscopy with self-reconstructing beams , 2010 .

[5]  M. Rahm,et al.  Gradient index metamaterial based on slot elements , 2010, 1002.1025.

[6]  M. Rahm,et al.  Metamaterial-based gradient index lens with strong focusing in the THz frequency range. , 2010, Optics express.

[7]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[8]  Cheng-Wei Qiu,et al.  Single gradientless light beam drags particles as tractor beams. , 2011, Physical review letters.

[9]  Cylindrical Fresnel lenses based on carbon nanotube forests , 2012 .

[10]  Ryuji Morita,et al.  Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures , 2012, Nano letters.

[11]  Federico Capasso,et al.  Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. , 2012, Nano letters.

[12]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[13]  Craig B. Arnold,et al.  Bessel and annular beams for materials processing , 2012 .

[14]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[15]  A. Alú,et al.  Full control of nanoscale optical transmission with a composite metascreen. , 2013, Physical review letters.

[16]  Vladimir M. Shalaev,et al.  Metasurface holograms for visible light , 2013, Nature Communications.

[17]  C. Pfeiffer,et al.  Millimeter-Wave Transmitarrays for Wavefront and Polarization Control , 2013, IEEE Transactions on Microwave Theory and Techniques.

[18]  A. Priou,et al.  Metamaterial-based half Maxwell fish-eye lens for broadband directive emissions , 2013 .

[19]  Qiang Kan,et al.  An ultrathin terahertz lens with axial long focal depth based on metasurfaces. , 2013, Optics express.

[20]  S. M. Wang,et al.  Collimated plasmon beam: nondiffracting versus linearly focused. , 2012, Physical review letters.

[21]  C. Pfeiffer,et al.  Cascaded metasurfaces for complete phase and polarization control , 2013 .

[22]  Erez Hasman,et al.  Spin-controlled plasmonics via optical Rashba effect , 2013 .

[23]  J. Valentine,et al.  Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. , 2014, Nano letters.

[24]  David R. Smith A cloaking coating for murky media , 2014, Science.

[25]  Erez Hasman,et al.  Dielectric gradient metasurface optical elements , 2014, Science.

[26]  Zhen Tian,et al.  Efficient flat metasurface lens for terahertz imaging. , 2014, Optics express.

[27]  Anthony Grbic,et al.  Controlling Vector Bessel Beams with Metasurfaces , 2014 .

[28]  Anthony Grbic,et al.  Efficient light bending with isotropic metamaterial Huygens' surfaces. , 2014, Nano letters.

[29]  Zhen Tian,et al.  A Broadband Metasurface‐Based Terahertz Flat‐Lens Array , 2015 .

[30]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[31]  Z. Lei,et al.  Bi-functional Fresnel zone plate from transformation optics , 2015 .

[32]  Erez Hasman,et al.  Optical Mode Control by Geometric Phase in Quasicrystal Metasurface. , 2015, Physical review letters.

[33]  Zhen Tian,et al.  Mapping the near-field propagation of surface plasmons on terahertz metasurfaces , 2015 .

[34]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[35]  Qiang Kan,et al.  A broadband terahertz ultrathin multi-focus lens , 2016, Scientific Reports.

[36]  Qiang Cheng,et al.  Free‐Standing Metasurfaces for High‐Efficiency Transmitarrays for Controlling Terahertz Waves , 2016 .

[37]  Derek Abbott,et al.  Dielectric Resonator Reflectarray as High-Efficiency Nonuniform Terahertz Metasurface , 2016 .

[38]  Daniel M. Mittleman,et al.  Terahertz Artificial Dielectric Lens , 2016, Scientific Reports.

[39]  Zhen Tian,et al.  Asymmetric excitation of surface plasmons by dark mode coupling , 2016, Science Advances.

[40]  D. Neshev,et al.  Terahertz focusing of multiple wavelengths by graphene metasurfaces , 2016 .

[41]  Shuangchun Wen,et al.  Optical integration of Pancharatnam-Berry phase lens and dynamical phase lens , 2016 .

[42]  Xiaomei Yu,et al.  Reflective gradient metasurfaces for polarization-independent light focusing at normal or oblique incidence , 2016 .

[43]  Wei Ting Chen,et al.  Super-Dispersive Off-Axis Meta-Lenses for Compact High Resolution Spectroscopy. , 2016, Nano letters.