Charmed roots and the Kroweras complement

. Although both noncrossing partitions and nonnesting partitions are uniformly enu-merated for Weyl groups, the exact relationship between these two sets of combinatorial objects remains frustratingly mysterious. In this paper, we give a precise combinatorial answer in the case of the symmetric group: for any standard Coxeter element, we construct an equivariant bijection between noncrossing partitions under the Kreweras complement and nonnesting partitions under a Coxeter-theoretically natural cyclic action we call the Kroweras complement . Our equivariant bijection is the unique bijection that is both equivariant and support-preserving, and is built using local rules depending on a new definition of charmed roots . Charmed roots are determined by the choice of Coxeter element—in the special case of the linear Coxeter ele- ment (1 , 2 ,...,n ), we recover one of the standard bijections between noncrossing and nonnesting partitions.

[1]  H. Thomas,et al.  Rowmotion in slow motion , 2017, Proceedings of the London Mathematical Society.

[2]  M. Bodnar Rational noncrossing partitions for all coprime pairs , 2017, Journal of Combinatorics.

[3]  Michelle Bodnar,et al.  Cyclic Sieving and Rational Catalan Theory , 2015, Electron. J. Comb..

[4]  Marko Thiel,et al.  From Anderson to zeta , 2015, Adv. Appl. Math..

[5]  V. Reiner,et al.  On non-conjugate Coxeter elements in well-generated reflection groups , 2014, 1404.5522.

[6]  Nathan Williams,et al.  Rational Associahedra and Noncrossing Partitions , 2013, Electron. J. Comb..

[7]  Nathan Williams,et al.  Promotion and rowmotion , 2011, Eur. J. Comb..

[8]  Hugh Thomas,et al.  A uniform bijection between nonnesting and noncrossing partitions , 2011, 1101.1277.

[9]  Brendon Rhoades,et al.  Cyclic sieving, promotion, and representation theory , 2010, J. Comb. Theory, Ser. A.

[10]  Jang Soo Kim,et al.  New interpretations for noncrossing partitions of classical types , 2009, J. Comb. Theory, Ser. A.

[11]  R. Mamede,et al.  On Noncrossing and Nonnesting Partitions of Type D , 2009, 0905.4371.

[12]  Christian Stump,et al.  Crossings and Nestings in Set Partitions of Classical Types , 2009, Electron. J. Comb..

[13]  Alex Fink,et al.  A bijection between noncrossing and nonnesting partitions for classical reflection groups , 2008, 0810.2613.

[14]  Christian Stump Non-crossing partitions, non-nesting partitions and Coxeter sortable elements in types A and B , 2008 .

[15]  Dmitri I. Panyushev,et al.  On orbits of antichains of positive roots , 2007, Eur. J. Comb..

[16]  T. Brady,et al.  Non-crossing partition lattices in finite real reflection groups , 2007 .

[17]  V. Reiner,et al.  Cyclic Sieving of Noncrossing Partitions for Complex Reflection Groups , 2007, math/0701792.

[18]  Drew Armstrong,et al.  Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups , 2006, math/0611106.

[19]  Nathan Reading Clusters, Coxeter-sortable elements and noncrossing partitions , 2005, math/0507186.

[20]  P. Cellini,et al.  Ad-nilpotent ideals of a Borel subalgebra II , 2001, math/0303065.

[21]  D. Bessis The dual braid monoid , 2001, math/0101158.

[22]  Christos A. Athanasiadis On Noncrossing and Nonnesting Partitions for Classical Reflection Groups , 1998, Electron. J. Comb..

[23]  Victor Reiner,et al.  Non-crossing partitions for classical reflection groups , 1997, Discret. Math..

[24]  Peter J. Cameron,et al.  Orbits of antichains revisited , 1995, Eur. J. Comb..

[25]  Germain Kreweras,et al.  Sur les partitions non croisees d'un cycle , 1972, Discret. Math..

[26]  Berkeley California Disclaimer,et al.  University of California , 1886, The American journal of dental science.

[27]  M. Bodnar Rational Catalan Combinatorics , 2018 .

[28]  D. Bessis Finite complex reection arrangements are K(; 1) , 2015 .

[29]  Thomas Brady,et al.  K(π 1)'s for Artin Groups of Finite Type , 2000 .

[30]  Mark Haiman,et al.  Conjectures on the Quotient Ring by Diagonal Invariants , 1994 .