Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides

A structure for guiding surface plasmon polaritons (SPPs) over millimeter distances with tight mode confinement is presented and analyzed in detail using the finite element method. The proposed long-range plasmonic waveguide consists of a dielectric ridge deposited on a narrow metal stripe supported by a dielectric buffer layer covering a low-index substrate. It is shown that such an asymmetric waveguide structure can be designed to support a long-range symmetric SPP mode, featuring a propagation length of ≈ 3.1 mm and lateral mode width of ≈ 1.6 μ m at telecom wavelengths of ~ 1.55 μm. Our analysis covers a broad spectrum of parameters: ridge dimensions, buffer layer parameters (refractive index and thickness), as well as metal stripe width, considering in detail the underlying mechanisms of SPP waveguiding in this configuration. The suggested configuration offers easy connection to electrodes enabling, e.g., thermo-optic or electro-optic control, and is technologically simple, making fabrication possible using only a few lithography steps. Additionally, a new figure of merit is introduced, which is related to a number of plasmonic components allowed for a given mode confinement and propagation loss, aiming thereby at the evaluation of the application potential of plasmonic waveguides.

[1]  Alexey V. Krasavin,et al.  Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides , 2008 .

[2]  Pierre Berini,et al.  Amplification of long-range surface plasmons by a dipolar gain medium , 2010 .

[3]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[4]  Cui Yiping,et al.  Bound modes analysis of symmetric dielectric loaded surface plasmon-polariton waveguides. , 2009, Optics express.

[5]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[6]  K. Meerholz,et al.  Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer , 2010 .

[7]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[8]  R. Gordon,et al.  Long range surface plasmons on asymmetric suspended thin film structures for biosensing applications. , 2010, Optics express.

[9]  Theoretical Analysis of Long-Range Dielectric-Loaded Surface Plasmon Polariton Waveguides , 2011 .

[10]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[11]  Markus Pollnau,et al.  Loss compensation in long-range dielectric-loaded surface plasmon-polariton waveguides. , 2011, Optics express.

[12]  Harald Ditlbacher,et al.  Dielectric stripes on gold as surface plasmon waveguides , 2006 .

[13]  Sergey I. Bozhevolnyi,et al.  Integrated power monitor for long-range surface plasmon polaritons , 2005 .

[14]  Thomas W. Ebbesen,et al.  Surface-plasmon circuitry , 2008 .

[15]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[16]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[17]  Laurent Markey,et al.  Fiber-coupled dielectric-loaded plasmonic waveguides. , 2010, Optics express.

[18]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[19]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[20]  Lin Zhu,et al.  Transmission and group delay of microring coupled-resonator optical waveguides. , 2006, Optics letters.

[21]  Kristjan Leosson,et al.  Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths. , 2011, Optics letters.

[22]  Qihuang Gong,et al.  Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides. , 2009, Optics express.

[23]  P. Berini Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures , 2000 .

[24]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[25]  Neil Genzlinger A. and Q , 2006 .

[26]  Antao Chen,et al.  Integration of photonic and silver nanowire plasmonic waveguides. , 2008, Nature nanotechnology.

[27]  Pierre Berini,et al.  Figures of merit for 2D surface plasmon waveguides and application to metal stripes. , 2007, Optics express.

[28]  Dimitri Geskus,et al.  Giant Optical Gain in a Rare‐Earth‐Ion‐Doped Microstructure , 2012, Advanced materials.

[29]  B. Chichkov,et al.  Laser-fabricated dielectric optical components for surface plasmon polaritons. , 2006, Optics letters.

[30]  F. Aussenegg,et al.  Electromagnetic energy transport via linear chains of silver nanoparticles. , 1998, Optics letters.

[31]  S. Bozhevolnyi Plasmonic nanoguides and circuits , 2008 .

[32]  Alexey V. Krasavin,et al.  Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides , 2007 .

[33]  A. Morimoto,et al.  Guiding of a one-dimensional optical beam with nanometer diameter. , 1997, Optics letters.

[34]  Jonathan Grandidier,et al.  Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. , 2009, Nano letters.

[35]  P. Berini,et al.  Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves , 2006, Journal of Lightwave Technology.

[36]  Sergey I. Bozhevolnyi,et al.  Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides , 2007 .

[37]  Alexey V. Krasavin,et al.  Wavelength selection by dielectric-loaded plasmonic components , 2009 .

[38]  Ewold Verhagen,et al.  Nanowire plasmon excitation by adiabatic mode transformation. , 2009, Physical review letters.

[39]  I. P. Radko,et al.  Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths. , 2010, Optics express.

[40]  Burke,et al.  Surface-polariton-like waves guided by thin, lossy metal films. , 1986, Physical review. B, Condensed matter.

[41]  Rupert F. Oulton,et al.  Confinement and propagation characteristics of subwavelength plasmonic modes , 2008 .

[42]  W. Marsden I and J , 2012 .

[43]  Sergey I. Bozhevolnyi,et al.  Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization , 2008 .

[44]  Laurent Markey,et al.  Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides. , 2008, Optics express.

[45]  Laurent Markey,et al.  Thermo-optic control of dielectric-loaded plasmonic waveguide components. , 2010, Optics express.

[46]  K. Kjaer,et al.  Integrated optical components utilizing long-range surface plasmon polaritons , 2005, Journal of Lightwave Technology.

[47]  Marie-Luce Thèye,et al.  Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films , 1970 .

[48]  A. Dereux,et al.  Design and Characterization of Dielectric-Loaded Plasmonic Directional Couplers , 2009, Journal of Lightwave Technology.

[49]  Wayne Dickson,et al.  All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain. , 2011, Nano letters.

[50]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[51]  M Mansuripur,et al.  Plasmonic nano-structures for optical data storage , 2009, Optical Data Storage.