Numerical simulation of pulsatile flow of blood in a porous-saturated overlapping stenosed artery
暂无分享,去创建一个
Nasir Ali | M. Sajid | Akbar Zaman | N. Ali | M. Sajid | A. Zaman | Muhammad Sajid
[1] D. F. Young,et al. Flow through a converging-diverging tube and its implications in occlusive vascular disease. I. Theoretical development. , 1970, Journal of biomechanics.
[2] N. Ali,et al. UNSTEADY TWO-LAYERED BLOOD FLOW THROUGH A $w$ -SHAPED STENOSED ARTERY USING THE GENERALIZED OLDROYD-B FLUID MODEL , 2016, The ANZIAM Journal.
[3] J. Doffin,et al. Oscillating flow between a clot model and a stenosis. , 1981, Journal of biomechanics.
[4] R. Usha,et al. Pulsatile flow of particle-fluid suspension model of blood under periodic body acceleration , 1999 .
[5] Prashanta Kumar Mandal,et al. An unsteady analysis of non-Newtonian blood flow through tapered arteries with a stenosis , 2005 .
[6] Davood Domiri Ganji,et al. Electrohydrodynamic flow analysis in a circular cylindrical conduit using Least Square Method , 2014 .
[7] Prashanta Kumar Mandal,et al. Effect of heat and mass transfer on non-Newtonian flow – Links to atherosclerosis , 2009 .
[8] Danny Bluestein,et al. Fluid mechanics of arterial stenosis: Relationship to the development of mural thrombus , 1997, Annals of Biomedical Engineering.
[9] Rama Bhargava,et al. Finite element study of nonlinear two-dimensional deoxygenated biomagnetic micropolar flow , 2010 .
[10] Davood Domiri Ganji,et al. A comprehensive analysis of the flow and heat transfer for a nanofluid over an unsteady stretching flat plate , 2014 .
[11] D. F. Young. Effect of a Time-Dependent Stenosis on Flow Through a Tube , 1968 .
[12] Rajandrea Sethi,et al. Extension of the Darcy–Forchheimer Law for Shear-Thinning Fluids and Validation via Pore-Scale Flow Simulations , 2012, Transport in Porous Media.
[13] Dalin Tang,et al. A numerical simulation of viscous flows in collapsible tubes with stenoses , 2000 .
[14] Kh. S. Mekheimer,et al. The micropolar fluid model for blood flow through a tapered artery with a stenosis , 2008 .
[15] Alan Chadburn Burton,et al. Physiology and biophysics of the circulation : an introductory text , 1965 .
[16] Prashanta Kumar Mandal,et al. Unsteady response of non-Newtonian blood flow through a stenosed artery in magnetic field , 2009 .
[17] Mehrdad Massoudi,et al. Pulsatile flow of blood using a modified second-grade fluid model , 2008, Comput. Math. Appl..
[18] Ranjan K. Dash,et al. Casson fluid flow in a pipe filled with a homogeneous porous medium , 1996 .
[19] G. Domairry,et al. Squeezing Cu–water nanofluid flow analysis between parallel plates by DTM-Padé Method , 2014 .
[20] Mehmet Yasar Gundogdu,et al. A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions , 2008 .
[21] Rama Bhargava,et al. Finite element simulation of unsteady magneto-hydrodynamic transport phenomena on a stretching sheet in a rotating nanofluid , 2013 .
[22] H. Barnes,et al. An introduction to rheology , 1989 .
[23] Y. Fung,et al. Flow in Locally Constricted Tubes at Low Reynolds Numbers , 1970 .
[24] D. F. Young,et al. Flow characteristics in models of arterial stenoses. I. Steady flow. , 1973, Journal of biomechanics.
[25] Prashanta Kumar Mandal,et al. Effect of body acceleration on unsteady pulsatile flow of non-newtonian fluid through a stenosed artery , 2007, Appl. Math. Comput..
[26] Davood Domiri Ganji,et al. Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel , 2014, Comput. Methods Programs Biomed..
[27] Dharmendra Tripathi,et al. FINITE ELEMENT STUDY OF TRANSIENT PULSATILE MAGNETO-HEMODYNAMIC NON-NEWTONIAN FLOW AND DRUG DIFFUSION IN A POROUS MEDIUM CHANNEL , 2012 .
[28] J. Eckenhoff,et al. Physiology and Biophysics of the Circulation , 1965 .
[29] Davood Domiri Ganji,et al. Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods , 2014 .
[30] Mukesh Kumar Sharma,et al. Pulsatile unsteady flow of blood through porous medium in a stenotic artery under the influence of transverse magnetic field , 2012, Korea-Australia Rheology Journal.
[31] Moustafa El-Shahed,et al. Pulsatile flow of blood through a stenosed porous medium under periodic body acceleration , 2003, Appl. Math. Comput..
[32] Davood Domiri Ganji,et al. Study on blood flow containing nanoparticles through porous arteries in presence of magnetic field using analytical methods , 2015 .
[33] J. C. Misra,et al. Flow in arteries in the presence of stenosis. , 1986, Journal of biomechanics.
[34] Nasir Ali,et al. Numerical simulation of unsteady micropolar hemodynamics in a tapered catheterized artery with a combination of stenosis and aneurysm , 2015, Medical & Biological Engineering & Computing.
[35] Sharidan Shafie,et al. Unsteady Two-Dimensional Blood Flow in Porous Artery with Multi-Irregular Stenoses , 2012, Transport in Porous Media.
[36] D. Piotrowski,et al. [Introduction to rheology]. , 1982, Acta haematologica Polonica.
[37] J. C. Misra,et al. Flow through blood vessels under the action of a periodic acceleration field:A mathematical analysis , 1988 .
[38] M E Clark,et al. Three-dimensional simulation of steady flow past a partial stenosis. , 1981, Journal of biomechanics.