Infinite products involving Dirichlet characters and cyclotomic polynomials
暂无分享,去创建一个
[1] D. Zmiaikou. Origamis and permutation groups , 2011 .
[2] Henri Cohen,et al. Number Theory: Volume II: Analytic and Modern Tools , 2007 .
[3] Michael E. Hoffman. Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences , 1999, Electron. J. Comb..
[4] C. Moore. Review: T. J. I'A. Bromwich, An Introduction to the Theory of Infinite Series , 1928 .
[5] E. Hansen. A Table of Series and Products , 1977 .
[6] A. Meyer,et al. Introduction to Number Theory , 2005 .
[7] Michael E. Hoffman. On multiple zeta values of even arguments , 2012, 1205.7051.
[8] T. MacRobert,et al. An Introduction to the Theory of Infinite Series. , 1928 .
[9] INFINITE PRODUCTS OF CYCLOTOMIC POLYNOMIALS , 2015, Bulletin of the Australian Mathematical Society.
[10] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[11] Y. Yamasaki. Evaluations of multiple Dirichlet L-values via symmetric functions , 2007, 0712.1639.
[12] Karl Dilcher,et al. An Introduction to Gauss Factorials , 2011, Am. Math. Mon..
[13] T. Apostol. Introduction to analytic number theory , 1976 .
[14] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[15] S. Akiyama,et al. On Analytic Continuation of Multiple L-Functions and Related Zeta-Functions , 2002 .
[16] Armin Straub,et al. On gamma quotients and infinite products , 2013, Adv. Appl. Math..