The Tricomi problem on the existence of homoclinic orbits in dissipative systems
暂无分享,去创建一个
[1] Limiting sets of trajectories of a pendulum-type system , 1956 .
[2] Gennady A. Leonov,et al. Lyapunov functions in the attractors dimension theory , 2012 .
[3] Gennady A. Leonov,et al. Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors , 1992 .
[4] Polina S. Landa,et al. Stochastic and Chaotic Oscillations , 1992 .
[5] R. Devaney. An Introduction to Chaotic Dynamical Systems , 1990 .
[6] G. Leonov. Strange attractors and classical stability theory , 2006 .
[7] C. Böhm. Nuovi criteri di esistenza di soluzioni periodiche di una nota equazione differenziale non lineare , 1953 .
[8] G. Seifert. On the existence of certain solutions of a nonlinear differential equation , 1952 .
[9] V. Belykh,et al. Qualitative investigation of a system of three differential equations in the theory of phase synchronization PMM vol. 39, n≗ 4, 1975, pp. 642-649 , 1975 .
[10] G. Seifert. On stability questions for pendulum-type equations , 1956 .
[11] G. Leonov,et al. Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .
[12] P. Bergé,et al. L'ordre dans le chaos. , 1984 .
[13] Gennady A. Leonov. On the global stability of the lorentz system , 1983 .
[14] S. E. Khaikin,et al. Theory of Oscillators , 1966 .
[15] Xinfu Chen. Lorenz Equations Part I: Existence and Nonexistence of Homoclinic Orbits , 1996 .
[16] G. Seifert,et al. On conditions for stability of solutions of pendulum-type equations , 1955 .
[17] L. Amerio. Determinazione delle condizioni di stabilità per gli integrali di un'equazione interessante l'elettrotecnica , 1949 .
[18] Adolf Giger. Ein Grenzproblem einer technisch wichtigen nichtlinearen Differentialgleichung , 1956 .
[19] I. N. Baker. Structures in Dynamics , 1993 .
[20] G. Seifert. On certain solutions of a pendulum-type equation , 1953 .
[21] James A. Yorke,et al. Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .
[22] S. Hastings,et al. A shooting approach to the Lorenz equations , 1992, math/9210217.
[23] William C. Troy,et al. A Proof That the Lorenz Equations Have a Homoclinic Orbit , 1994 .
[24] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[25] W. Hayes,et al. On the equation for a damped pendulum under constant torque , 1953 .