Fast Integral Image Estimation at 1% measurement rate

We propose a framework called ReFInE to directly obtain integral image estimates from a very small number of spatially multiplexed measurements of the scene without iterative reconstruction of any auxiliary image, and demonstrate their practical utility in visual object tracking. Specifically, we design measurement matrices which are tailored to facilitate extremely fast estimation of the integral image, by using a single-shot linear operation on the measured vector. Leveraging a prior model for the images, we formulate a nuclear norm minimization problem with second order conic constraints to jointly obtain the measurement matrix and the linear operator. Through qualitative and quantitative experiments, we show that high quality integral image estimates can be obtained using our framework at very low measurement rates. Further, on a standard dataset of 50 videos, we present object tracking results which are comparable to the state-of-the-art methods, even at an extremely low measurement rate of 1%.

[1]  Pietro Perona,et al.  The Fastest Pedestrian Detector in the West , 2010, BMVC.

[2]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[3]  R. Calderbank,et al.  Compressed Learning : Universal Sparse Dimensionality Reduction and Learning in the Measurement Domain , 2009 .

[4]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[6]  Pascal Frossard,et al.  Correlation estimation from compressed images , 2013, J. Vis. Commun. Image Represent..

[7]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[8]  Shree K. Nayar,et al.  Programmable Imaging: Towards a Flexible Camera , 2006, International Journal of Computer Vision.

[9]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Guillermo Sapiro,et al.  Learning to Sense Sparse Signals: Simultaneous Sensing Matrix and Sparsifying Dictionary Optimization , 2009, IEEE Transactions on Image Processing.

[11]  Pavan K. Turaga,et al.  Recurrence textures for human activity recognition from compressive cameras , 2012, 2012 19th IEEE International Conference on Image Processing.

[12]  Rama Chellappa,et al.  Compressive Acquisition of Dynamic Scenes , 2010, ECCV.

[13]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Aswin C. Sankaranarayanan,et al.  CS-MUVI: Video compressive sensing for spatial-multiplexing cameras , 2012, 2012 IEEE International Conference on Computational Photography (ICCP).

[15]  Pavan K. Turaga,et al.  Reconstruction-Free Action Inference from Compressive Imagers , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Richard G. Baraniuk,et al.  The STONE Transform: Multi-Resolution Image Enhancement and Real-Time Compressive Video , 2013, ArXiv.

[17]  D. F. Andrews,et al.  Scale Mixtures of Normal Distributions , 1974 .

[18]  Chinmay Hegde,et al.  NuMax: A Convex Approach for Learning Near-Isometric Linear Embeddings , 2015, IEEE Transactions on Signal Processing.

[19]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[21]  Xiaoou Tang,et al.  Learning a Deep Convolutional Network for Image Super-Resolution , 2014, ECCV.

[22]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[23]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[24]  R. Venkatesh Babu,et al.  SeamSeg: Video Object Segmentation Using Patch Seams , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Masao Fukushima,et al.  Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..

[26]  Yong-Jin Liu,et al.  An implementable proximal point algorithmic framework for nuclear norm minimization , 2012, Math. Program..

[27]  Eero P. Simoncelli,et al.  Modeling Multiscale Subbands of Photographic Images with Fields of Gaussian Scale Mixtures , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Lei Zhang,et al.  Fast Compressive Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[30]  Gabriel Frahm Generalized Elliptical Distributions: Theory and Applications , 2004 .

[31]  Jian Wang,et al.  Reconstruction-free inference on compressive measurements , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[32]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[33]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[34]  Richard G. Baraniuk,et al.  The smashed filter for compressive classification and target recognition , 2007, Electronic Imaging.

[35]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[36]  William T. Freeman,et al.  Informative Sensing , 2009, ArXiv.

[37]  Richard G. Baraniuk,et al.  An Architecture for Compressive Imaging , 2006, 2006 International Conference on Image Processing.

[38]  Martin J. Wainwright,et al.  Scale Mixtures of Gaussians and the Statistics of Natural Images , 1999, NIPS.

[39]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.