Almost sure convergence of the Hill estimator

On caracterise des suites kn de telle facon que l'estimateur de Hill de l'indice de queue base sur les kn statistiques d'ordre superieures d'un echantillon de taille n d'une distribution de Type Pareto soit fortement consistant

[1]  Jozef L. Teugels,et al.  EXTREME VALUES IN INSURANCE MATHEMATICS , 1984 .

[2]  Paul Deheuvels,et al.  Kernel Estimates of the Tail Index of a Distribution , 1985 .

[3]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[4]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[5]  E. Csáki The law of the iterated logarithm for normalized empirical distribution function , 1977 .

[6]  D. Mason,et al.  The asymptotic behavior of sums of exponential extreme values , 1988 .

[7]  J. Kiefer Iterated Logarithm Analogues for Sample Quantiles When P n ↓0 , 1985 .

[8]  P. Deheuvels Strong laws for the k-th order statistic when k≦c log2n , 1986 .

[9]  P. Deheuvels,et al.  A Semigroup Approach to Poisson Approximation , 1986 .

[10]  D. Mason,et al.  Central limit theorems for sums of extreme values , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  J. Tiago de Oliveira,et al.  Statistical Extremes and Applications , 1984 .

[12]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[13]  D. Mason Laws of Large Numbers for Sums of Extreme Values , 1982 .

[14]  E. Haeusler,et al.  On Asymptotic Normality of Hill's Estimator for the Exponent of Regular Variation , 1985 .

[15]  Richard L. Smith,et al.  Large deviations of tail estimators based on the Pareto approximation , 1987, Journal of Applied Probability.

[16]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[17]  D. Mason,et al.  A Law of the Iterated Logarithm for Sums of Extreme Values from a Distribution with a Regularly Varying Upper Tail , 1987 .

[18]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .